Presenting a global and interdisciplinary approach to plant ecology, this much-awaited new edition of *Plants and Vegetation* integrates classical themes with the latest ideas, models and data. Keddy draws on extensive teaching experience to bring the field to life, guiding students through essential concepts with numerous real-world examples and full-colour illustrations throughout. The chapters begin by presenting the wider picture of the origin of plants and their impact on the Earth, before exploring the search for global patterns in plants and vegetation. Chapters on resources, stress, competition, herbivory and mutualism explore causation. After chapters on how pattern in vegetation is studied, the book concludes with a chapter on conservation that addresses the concern that one-third of all plant species are at risk of extinction. The scope of this edition is broadened further by a new chapter on population ecology, along with extensive examples including South African deserts, the Guyana Highlands of South America, Himalayan forests and arctic-alpine environments.

Paul A. Keddy has taught plant ecology for more than 30 years. He is often a conference keynote speaker, and delights in bringing science alive for his audience. Dr. Keddy’s research explores environmental factors that control plant communities and their manipulation to maintain and restore biodiversity. His awards include a National Wetlands Award for Science Research, and the Lawson Medal and Gleason Prize for *Competition*, and his first edition of *Wetland Ecology* (Cambridge University Press, 2000) won the Society of Wetland Scientists’ Merit Award. He has also advised organisations including World Wildlife Fund, Earthjustice and The Nature Conservancy.

Cover: The Socotra archipelago off the east coast of Africa has many endemic plants, including this dragon’s blood tree (*Dracaena cinnabari*). You can read more about these trees in Section 9.4.3, and about the harm being caused by goat grazing in Box 13.2. The archipelago is a fragment of the former continent of Gondwana, which is discussed in Section 8.2.2. (Vladimir Melnik, Shutterstock).
The mass of vegetation on the Earth very far exceeds that of animal organisms; for what is the volume of all the large living Cetacea and Pachydermata when compared with the thickly-crowded colossal trunks of trees, of from eight to twelve feet in diameter, which fill the vast forests covering the tropical region of South America, between the Orinoco, the Amazon, and the Rio da Madeira? And although the character of different portions of the Earth depends on the combination of external phenomena, as the outlines of mountains – the physiognomy of plants and animals – the azure of the sky – the forms of the clouds – and the transparency of the atmosphere – it must still be admitted that the vegetable mantle with which the Earth is decked constitutes the main feature of the picture.

Alexander von Humboldt. 1845. *Cosmos: A Sketch of the Physical Description of the Universe*
Contents

List of Boxes page xvii
Preface xix
Chapter 1 Plants Create the Biosphere 1

1.1 Introduction: The Importance of Plants

1.2 The First Land Plants

1.3 Energy Flow Organizes Molecules

1.4 Membranes Are Necessary for Life

1.5 Eukaryotic Cells Originated as Symbioses

1.6 The Origin of Photosynthesis

1.7 The Oxygen Revolution Was a Consequence of Photosynthesis

1.8 The Cambrian Explosion of Multicellular Life

1.9 Plants Affect Climate

1.10 Sediment and Ice Cores Provide a Record of Past Environments

1.11 The Biosphere

Conclusion

Review Questions

Further Reading

Chapter 2 The Search for Global Patterns 35

2.1 Introduction: There Are Two Ways to Classify Plants and Vegetation

2.2 Functional Classifications Are Based on Ecological Traits

2.2.1 Functional Classifications by von Humboldt, Raunkiaer and Küchler

2.2.2 Climate Has a Major Impact on Plant Traits

2.2.3 Climate and Life Form Are Summarized as Biomes

2.2.4 Functional Classification Systems Have Limitations
Chapter 3 Resources

3.1 Introduction: Plants Must Find Resources to Grow 66
 3.1.1 The CHNOPS Perspective 66
 3.1.2 The Costs of Acquisition 69

3.2 Carbon Dioxide: Foraging in an Atmospheric Reservoir 69

3.3 Light and Photosynthesis: Harvesting Photons 71
 3.3.1 Three Measures of Photon Harvest 71
 3.3.2 There are Different Photosynthetic Types 71
 3.3.3 An Exception to the Rule: Root Uptake of CO₂ 72
 3.3.4 Another View of Photosynthetic Types 73
 3.3.5 Architecture Affects Photon Harvesting 74
 3.3.6 The Overriding Importance of Height 76

3.4 Below-Ground Resources 77
 3.4.1 Water 77
 3.4.2 Nitrogen 78
 3.4.3 Phosphorus 79
 3.4.4 Experimental Tests for Nitrogen and Phosphorus Limitation 81
 3.4.5 Other Sources of Evidence for Nutrient Limitation 85
 3.4.6 Mineral Nutrients: A Single Cell Perspective 85

3.5 Resources Affect Entire Ecosystems 87
 3.5.1 Primary Production is Controlled by Resources 87
 3.5.2 Soils Are Produced by Two Causal Factors 89
 3.5.3 Life After Death: Soils, Detritivores and Decomposers 92
 3.5.4 Soil Resources Have Altered Human History 96
 3.5.5 Two Historical Digressions: Jan Baptiste von Helmont and Titus Smith 97

3.6 Resources Vary in Space and Time 98
 3.6.1 There is Small-Scale Heterogeneity 98
 3.6.2 Resources Often Change Along Gradients 99
 3.6.3 Resources Often Occur in Transitory Patches 103
Chapter 4 Competition

4.1 Introduction: Plants Struggle Against One Another for Resources 124
4.2 There Are Many Kinds of Competition 126
 4.2.1 Intraspecific Competition 126
 4.2.2 Distinguishing Between Intraspecific and Interspecific Competition 126
 4.2.3 Competition Intensity 129
 4.2.4 Competitive Effect and Competitive Response 130
 4.2.5 Competitive Dominance 130
4.3 Competition Has Many Consequences 132
 4.3.1 Self-Thinning in Monocultures 132
 4.3.2 Dominance Patterns in Monocultures 134
 4.3.3 Density Dependence in Annual Plants 136
 4.3.4 The Relationship Between Intensity and Asymmetry of Competition 139
4.4 Competitive Hierarchies Are Widespread 139
 4.4.1 Methods for Establishing Hierarchies 139
 4.4.2 The Consistency of Hierarchies Among Habitats 141
 4.4.3 Light and Shoot Size as Key Factors Producing Hierarchies 143
4.5 Competition Gradients Are Widespread 146
 4.5.1 Measuring Competition Intensity Along Gradients 146
 4.5.2 Competition Intensity Gradients in an Old Field 147
 4.5.3 Competition and Cacti 149
 4.5.4 Competition Intensity Along a Soil Depth Gradient 149
 4.5.5 Competition Intensity Gradients in Wetlands 150
 4.5.6 Competition Along an Altitudinal Gradient 150
4.6 Foraging Ability Might Be a Competitive Trait 152
4.7 Mycorrhizae Can Affect Competition 153
4.8 Two Competition Models 154
 4.8.1 The Problem of Coexistence 154
 4.8.2 Patch Dynamics: A Model 155
 4.8.3 Gradients and Zonation: A Model 157
4.9 The Role of Models in Ecology 159
Chapter 5 Disturbance 163

5.1 Introduction: Disturbance Removes Biomass 164
5.2 Disturbance Has Four Properties 165
 5.2.1 Duration 165
 5.2.2 Intensity 165
 5.2.3 Frequency 165
 5.2.4 Area 165
5.3 Examples of Disturbance 166
 5.3.1 Fire Disturbs Many Kinds of Vegetation 166
 5.3.2 Erosion Creates Bare Ground 173
 5.3.3 Animals Create Gaps in Vegetation 175
 5.3.4 Sediment From Flooding Can Bury Wetlands 178
 5.3.5 Ice Reworks Shorelines 182
 5.3.6 Waves 183
 5.3.7 Storms 183
5.4 Catastrophes Have Low Frequency and High Intensity 185
 5.4.1 Landslides 185
 5.4.2 Volcanic Eruptions 187
 5.4.3 Meteor Impacts 189
5.5 Measuring the Impacts of Disturbance With Experiments: Two Examples 196
 5.5.1 Forested Watersheds at Hubbard Brook 196
 5.5.2 Marshes Along the Ottawa River 198
5.6 Disturbance Creates Gap Dynamics 200
 5.6.1 Many Kinds of Trees Regenerate in Gaps 200
 5.6.2 Buried Seeds (“Seed Banks”) Allow Regeneration After Disturbance 202
 5.6.3 Rivers Create Gaps by Depositing Sediment 204
5.7 Logging is a Disturbance Caused by Humans 205
5.8 Multiple Factors in Plant Communities: Fire, Flooding and Drought in the Everglades 206

Conclusion 208
Review Questions 209
Further Reading 209

Chapter 6 Herbivory 211

6.1 Introduction: Herbivores Have Large Impacts Upon Plants 212
 6.1.1 Two Cautions Are Necessary 213
6.2 Observations on Wildlife Diets: Four Examples 214
Chapter 7 Positive Interactions

7.1 Introduction: Plants Can Cooperate With Other Plants, Fungi and Animals

7.1.1 Definitions 260

7.1.2 A Brief History of Positive Interactions 261

7.2 Positive Interactions Occur Between Plants and Plants 262

7.2.1 Nurse Plants 262

7.2.2 Gradients Illustrate How Stress Affects Positive Interactions 265

7.2.3 Examples of Positive Interactions in Wetlands 265

7.2.4 Commensalism May Be Common in Plant Communities 267

7.3 There Are Many Positive Interactions Between Plants and Fungi 267

7.3.1 There Are Four Kinds of Mycorrhizae 267

7.3.2 Ectomycorrhizae Are Vital to Forests 270

7.3.3 Mycorrhizae May Be Less Important in Wet Habitats 272
7.3.4 Measuring Costs and Benefits
7.3.5 Lichens Are Somewhat Different, and Somewhat Similar
7.3.6 Fungi Can Also Occur in Shoots and Leaves

7.4 Positive Interactions Between Plants and Animals:
Part 1 Pollination
7.4.1 Animals Pollinate Flowers
7.4.2 What Are the Mutual Benefits?
7.4.3 Sexual Reproduction Has Costs
7.4.4 Pollination Ecology Was Founded by Sprengel and Darwin
7.4.5 Another Example: Some Flowers Are Pollinated by Flies

7.5 Positive Interactions Between Plants and Animals:
Part 2 Seed Dispersal
7.5.1 Animals Eat Fruits and Spread Seeds
7.5.2 Rodents, Nuts and Mast Years
7.5.3 Ants Disperse Seeds
7.5.4 Can Seed Dispersal Become an Obligate Mutualism?

7.6 Animals Can Defend Plants From Herbivores and Competitors

7.7 Mathematical Models of Mutualism
7.7.1 A Population Dynamics Model
7.7.2 A Cost–Benefits Model

7.8 Mutualism Generates Complex Networks
Conclusion
Review Questions
Further Reading

Chapter 8 Time

8.1 Introduction: There Are Many Time Scales in Ecology
8.1.1 Each Ecological Process Has a Time Scale
8.1.2 Some Sources of Evidence: Tree Rings, Sediment Cores and Fossils

8.2 Millions of Years: Flowering Plants and Continental Drift
8.2.1 Flowering Plants Appear in the Cretaceous Era
8.2.2 Continents Derived from Gondawa Have Remarkable Plant Diversity

8.3 Thousands of Years: The Pleistocene Glaciations
8.3.1 Erosion and Deposition Were Caused by Glacial Ice
8.3.2 Loess Was Deposited by Wind
8.3.3 Pluvial Lakes Expanded
8.3.4 Drought Affected Tropical Forests
8.3.5 Sea Levels Fell as Ice Sheets Expanded
8.3.6 Plant Distributions Changed
8.3.7 Humans Appeared and Spread to New Continents
8.3.8 Sea Levels Rose as Ice Sheets Melted
8.4 Hundreds of Years: Succession 322
8.4.1 Succession Is Directional Change in Vegetation 322
8.4.2 Four Examples of Succession 323
8.4.3 Predictive Models for Plant Succession 330
8.4.4 More on Mechanisms of Succession 331
8.4.5 There Are Disagreements About Succession 332
Conclusion 335
Review Questions 336
Further Reading 336

Chapter 9 Populations 339

9.1 Introduction: Working With Single Species 340
9.2 Population Models and Exponential Growth 341
9.3 How Many Seeds Will a Plant Produce? 343
9.4 The Fate of Seeds 344
 9.4.1 A Typical Type III Survival Curve 344
 9.4.2 Quantitative Studies of the Fates of Seeds 346
 9.4.3 Dragon’s Blood Trees in Deserts and Seedlings in Forests 348
 9.4.4 More on Saguaro Seedlings 349
9.5 What Determines the Size of Seeds? 350
9.6 Clones and Genets 351
 9.6.1 The Strawberry–Coral Model 353
 9.6.2 The Elm–Oyster Model 353
 9.6.3 The Aphid–Rotifer Model 354
9.7 A Population Study on the Effects of Herbivores 354
9.8 A Population Study on the Effects of Seed Transport Along a Gradient 355
9.9 Plant Life Spans 358
9.10 Population Ecology of the Brazil Nut Tree: A Size-structured Model 361
 9.10.1 Economic Importance 361
 9.10.2 Ecology 361
 9.10.3 A Size-structured Model Using the Lefkovitch Matrix 361
Conclusion 364
Review Questions 364
Further Reading 365

Chapter 10 Stress 367

10.1 Introduction: Stress Constrains Growth 368
10.2 Habitats That Lack Resources: Drought as a Widespread Example 369
 10.2.1 Deserts 369
 10.2.2 Grasslands 373
 10.2.3 Mediterranean Shrublands 375
 10.2.4 Rock Barrens 379
10.3 Habitats Where Resources Are Present, Yet Unavailable: Peatlands 382
10.4 Habitats Constrained by a Regulator: Cold 386
 10.4.1 Arctic and Alpine Plants 386
 10.4.2 Deciduous Forests 390
10.5 Habitats Constrained by a Regulator: Salinity 392
 10.5.1 Salinity, Plant Zonation and Physiological Drought 392
 10.5.2 Stress, Zonation and Competition 392
 10.5.3 Salinity and Pulses of Regeneration 393
10.6 Two Extreme Cases of Stress Tolerance 394
 10.6.1 Endolithic Plants 394
 10.6.2 Flooded Plants 394
10.7 Pollution Is a Source of Stress for Plants 397
 10.7.1 Acid Rain: Lessons From the Smoking Hills 398
 10.7.2 Radiation: Lessons From the Brookhaven National Laboratory 398
10.8 Some Theory 399
 10.8.1 Concepts of Stress and Strain 399
 10.8.2 Competition Is a Source of Stress 400
 10.8.3 Stress Creates Metabolic Costs 400
 10.8.4 Evolution and Risk Aversion 401
 10.8.5 Plants in Stressed Habitats Have Low Growth Rates 402
 10.8.6 The CSR Synthesis 402
10.9 Stress Acts at Many Scales 406
 Conclusion 408
 Review Questions 409
 Further Reading 409

Chapter 11 Gradients and Plant Communities 411

11.1 Introduction: Gradients Create Pattern in Plant Communities 412
11.2 Describing Pattern Along Obvious Natural Gradients 412
11.3 Multivariate Methods for Pattern Detection 418
 11.3.1 The Data Matrix 418
 11.3.2 Measuring Similarity 419
 11.3.3 Ordination Techniques 420
 11.3.4 Ordinations Based Upon Species Data 421
 11.3.5 Ordinations Can Combine Species and Environmental Data 422
 11.3.6 Functional Simplification in Ordination 425
11.4 Vegetation Classification 426
 11.4.1 Phytosociology 427
 11.4.2 Classification for Land Management 431
11.5 Gradients and Communities 435
 11.5.1 Clements and Gleason 435
 11.5.2 The Temporary Victory of the Gleasonian View 436
 11.5.3 Null Models and Patterns Along Gradients 440
11.6 Empirical Studies of Patterns Along Gradients 441

Conclusion 448
Review Questions 449
Further Reading 449

Chapter 12 Diversity 451

12.1 Introduction: Why Are There So Many Kinds of Plants? 452
12.2 Large Areas Have More Plant Species 453
12.3 Areas With More Kinds of Habitat Have More Plant Species 455
12.4 Equatorial Areas Have More Plant Species 457
12.5 More Examples of Plant Species Diversity 462
 12.5.1 Mediterranean Climate Regions 462
 12.5.2 Carnivorous Plants 463
 12.5.3 Deciduous Forests 463
 12.5.4 Diversity, Biogeography and the Concept of Endemism 464
12.6 Models to Describe Species Diversity at Smaller Scales 467
 12.6.1 Intermediate Biomass 467
 12.6.2 Intermediate Disturbance 468
 12.6.3 Centrifugal Organization 472
12.7 Relative Abundance: Dominance, Diversity and Evenness 474
12.8 Microcosm Experiments on Richness and Diversity 479
12.9 Field Experiments on Richness and Diversity 482
12.10 Implications for Conservation 484
 Conclusion 486
 Review Questions 487
 Further Reading 487

Chapter 13 Conservation and Management 491

13.1 Introduction: It Is Time to Apply What We Know 492
13.2 Some Historic Examples of Vegetation Degradation 492
 13.2.1 Ancient Assyria 492
 13.2.2 Ancient Rome 493
 13.2.3 Louisiana Wetlands 493
 13.2.4 Easter Island 498
 13.2.5 The Galapagos: Pinta Island 500
13.3 The World Needs Large Protected Areas 502
 13.3.1 Designing a Protected Area System 502
 13.3.2 There Are Different Levels of Protection 504
 13.3.3 Biological Hotspots Are a Priority 507
 13.3.4 Large Forests Are a Priority 510
 13.3.5 Large Wetlands Are a Priority 512
 13.3.6 A Global Assessment of Endemic Plant Conservation 512
<table>
<thead>
<tr>
<th>Box 1.1</th>
<th>Vladimir Vernadsky Writes La Biosphère</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box 2.1</td>
<td>Alexander von Humboldt Explores the Andes</td>
</tr>
<tr>
<td>Box 2.2</td>
<td>Takhtajan Survives Stalin, Genocide and Two World Wars</td>
</tr>
<tr>
<td>Box 3.1</td>
<td>The Composition and Origin of the Atmosphere</td>
</tr>
<tr>
<td>Box 3.2</td>
<td>Fritz Haber Changes the Global Nitrogen Cycle</td>
</tr>
<tr>
<td>Box 3.3</td>
<td>Big Molecules Have Big Consequences</td>
</tr>
<tr>
<td>Box 4.1</td>
<td>Testing for Patterns in Competitive Relationships</td>
</tr>
<tr>
<td>Box 5.1</td>
<td>Warfare as a Disturbance</td>
</tr>
<tr>
<td>Box 6.1</td>
<td>Naval Stores and Resin</td>
</tr>
<tr>
<td>Box 6.2</td>
<td>Design of Exclosure Experiments for Herbivores</td>
</tr>
<tr>
<td>Box 7.1</td>
<td>Fortune Favours the Prepared Mind: Bernhard Frank Discovers Mycorrhizae</td>
</tr>
<tr>
<td>Box 8.1</td>
<td>Mr. Hofmeister and the Vanishing Gametophyte</td>
</tr>
<tr>
<td>Box 9.1</td>
<td>Really Big Trees and Really Old Trees</td>
</tr>
<tr>
<td>Box 10.1</td>
<td>The Discovery of Carnivorous Plants</td>
</tr>
<tr>
<td>Box 10.2</td>
<td>Stress Acts as a Filter Upon Species Pools</td>
</tr>
<tr>
<td>Box 11.1</td>
<td>Getting the History Right: Null Models in Ecology</td>
</tr>
<tr>
<td>Box 11.2</td>
<td>Gleason, Clements and a Community Structure Continuum: A Possible Synthesis</td>
</tr>
<tr>
<td>Box 12.1</td>
<td>Diversity Indices</td>
</tr>
<tr>
<td>Box 12.2</td>
<td>The Park Grass Experiment at Rothamsted</td>
</tr>
<tr>
<td>Box 13.1</td>
<td>The Plague of Bush Meat and the Road to Ruin</td>
</tr>
<tr>
<td>Box 13.2</td>
<td>Goats and Desertification</td>
</tr>
</tbody>
</table>
Preface

Welcome to the second edition!

When planning the first edition, I wanted to write the book that should have been there to instruct me when I was a young biologist, the book I wish I had to consult when I was 18. The chapters consist of 13 topics that should be included in every plant ecology course. That would be about two weeks per topic area in a one-semester course. Each chapter begins with some inescapable basics (about one-third of the chapter), some more in-depth reading for senior students (another third), and some advanced material that might be of use later in one’s career (another third). I assume of course that you will buy this book and keep it as a lifetime companion, not just rent it for a few months.¹ You can, of course, rent or borrow if you wish but good books grow along with you. I have written this book with that in mind: some basic principles are so obvious we need to hear them first when we are young and then repeatedly as we age.

At the time the first edition went to press, I was seriously ill and leaving my position in Louisiana, as well as trying to finish a guide to nature in Louisiana, and coping with unusual levels of academic perfidy. Not to mention the aftermath of Hurricanes Katrina and Rita. Louisiana was meanwhile beginning her march of folly into the ocean, amidst chants of “Drill, baby, drill!” In a perfect world, I would have had a few more quiet months for reflection and editing and revision but, of course, if you wait for the perfect time to write the perfect book, it is possible that one will die long before that state of perfection is attained. I have since had five years in the deciduous forests – living in solitude longer than Thoreau, but not so long as St. Francis. This has allowed me to reflect further on the material in the book, to consider the suggestions and opinions of published reviews, and to correspond with students.

So, you ask, what about the new edition?

My first task has been some pruning. Most plants benefit from pruning, so long as it is carried out with precision. I have taken branches out of nearly every chapter. I like the form and architecture much better now. I hope the flow of ideas is clearer, and that the remaining figures more perfectly illuminate the text. Each chapter has, more

¹ Yes, I know good books are expensive. Particularly in hard cover. But they last a lifetime. I still have a hard cover of *Geographical Ecology* that I bought as an undergraduate. I do understand that money is in short supply for most students – I once lived in a basement apartment where I met many of the invertebrates, including scutigerans, that I was learning about at university. My suggested solution for books? Let your relatives know. Many family members are desperate for a long-lasting and worthwhile Christmas or birthday gift. Instead of an ill-fitting sweater, or a piece of kitsch that will soon be forgotten, let them choose a book from your list, and write something personal in it. Long after they have passed on, you will still have a treasured reminder of them in your personal library.
clearly I hope, those three sections: (1) basics, (2) more in-depth reading and (3) advanced material. Given this structure, beginners should remember that if any chapter seems overwhelming, it is fine to stop part way through. Even a writer has to do this. There really are parts of the book that still challenge my understanding, and I was the one who wrote it! If you merely read the first third of every chapter you will have grasped the essentials.

Having marked thousands of exams and attended an excruciating number of seminars and oral exams, I can assure you that many people who claim to have had a plant ecology course have either been badly taught or fail to remember much at all. Or both. Hence you will find certain topics continue to be emphasized simply because I found that most students I met did not know them.

Although I wrote this book for a one-semester undergraduate plant ecology course, you could also use this book in a graduate course. In this case, having laid the foundations early in the chapter (perhaps as preparatory reading assignments) you could explore the examples and discussions later in the chapter. I have continued to include important people in ecology. You will meet people including Carolus Linnaeus, Alexander von Humboldt, Joseph Banks, Alfred Wallace, Charles Darwin, Wilhelm Hofmeister, Vladimir Vernadsky, Bernhard Frank, Armen Takhtajan, Christen Raunkiaer, Fritz Haber, Ronald Fisher and Robert Whittaker. No, these are not the people who are currently promoting themselves with trumpets and headlines, nor their sycophants, but people who were devoted to botany, often overcoming great hardship to advance our understanding of plants and plant ecology. (Well, except for Haber. His wife shot herself in shame; but even so, he is part of the story.) When we forget them, we lose a part of ourselves.

I also had my fellow professors and other scholars in mind. There is so much pressure to specialize into narrow sub-disciplines that it is easy to lose track of the big picture. This book provides such a big picture as a backdrop against which your own work can be viewed more clearly. It should also help you teach topics well beyond your own specialty. The chapters end with difficult problems that remain to be solved, and so, in a general way, provide trajectories of how other people are trying to solve problems in other sub-disciplines. I hope I have dealt with your own specialty adequately but, of course, no one can claim to be an expert in every field, however widely one reads. Still, someone has to make the leap to the big picture. I often advise younger scholars struggling with their own field that one of the best ways to find new approaches and insights is to read about other fields. In this sense, deserts really have taught me a great deal about wetlands.

I have also added new material, where it was important, but very selectively. I am not of the opinion that every piece of work rushed into print in 2012 is necessarily an improvement over excellent and classic work from 1972. I have added work, much as I would have added in my lectures, to update major themes, but not to obscure the past or stroke friends’ egos. Good work will stand the test of time; we ignore it at our peril. This is doubly true now that the internet and hand-held devices fragment our attention spans and reduce pages of text to a few headlines. In the past, when I had to walk across campus to the library (sometimes through the snow) and pay to photocopy articles page by page, there was an incentive to read them, not just collect them. But even then
(ca. 1975) one easily slipped into the mistaken belief that if you had a copy you must have understood the content! Desks then easily accumulated piles of papers that had been copied but not read. Now that pdf files flow effortlessly over the internet, even right into my office in the forest, how easy it is to assume that the electronic acquisition of a paper, or (gasp) automatic download of a citation, is a substitute for having read and considered the contents. Increasingly, I suspect that many young scholars are citing work they have not even read. (Yes, my friends, it is far more obvious than you might suspect.) This is a dangerous route to error and ignorance. I assure you that every single article I cite in this book, I have read. Many of the books I even own. From time to time I take them down, dust them off, and re-read them. The effort is usually well rewarded.

I have also had the time to reconsider each figure. Some have been removed. I thought Lonesome George the Galapagos tortoise would have to leave, particularly as he has died, but Ole Hamman has helped me keep him in as a cheerful insert in Figure 13.8. Some figures have been revised for clarity (world floristic regions now appears in colour in Figure 2.12). A few more have been added, such as the world leaf economic spectrum (Figure 3.26). If you simply flip through the figures, you will see the improvements.

When Cambridge decided to print in full colour, I went through the entire book again. This time I was able to add in some beautiful and strange plants from around the world: the saguaro cactus, Dendrobium orchids, Myrmecodia beccarii, the ant house epiphyte, Magnolia sinica, the yareta, Telopea speciosissima, the dragon’s blood tree, Welwitschia mirabilis. There are also more colour maps, including an accurate map of world grasslands (Figure 10.7) and the latest maps of global plant diversity (Figure 12.10). The images also range across time, from early paintings of newly discovered plants to a recent highly processed satellite image from the NASA Earth Observatory. For those of you who remain intimidated by the size of the book, may I suggest you begin by just flipping through the colour images and reading those captions? I think you will find they tell quite a story in their own right.

Three technical challenges remained.

First, there was explaining what we know about the origin of plants and their impact on the Earth. I do think it is one the most important biological stories. In my experience, it is not well taught in schools, and over the last five years, I have seen important topics such as evolution and global warming systematically undermined by people being paid to shill for ignorance. I still meet students who tell me, gravely, that evolution violates the second law of thermodynamics, when, as plants brilliantly illustrate, evolution is, in fact, a direct and necessary consequence of the second law of thermodynamics. The story of plant evolution must be told, but some think it should not start the book. I have tried to juggle sections here, keeping the story near the beginning, but introducing modern plants earlier, and moving energy flow to a sub-theme.

Second, in a related way, some reviewers thought the book covered too much basic work that students should already know. I don’t disagree. Early land plants and coal swamps, and the oxygen revolution and major types of plants should indeed have been
taught. All I know is that I have repeatedly sat on graduate qualifying exams where students who assured us they had earned a BSc really did not know why coal was a fossil fuel, or what early land plants looked like, or what is meant by alternation of generations. We may expect that students should know such basics, but apparently they often do not.

The third issue was population ecology. Some reviewers wanted a chapter on the topic. My graduate research was in population ecology. But this experience taught me as much about its limitations as well as its strengths. In the first edition I tried to show you how populations fit into several different themes. That is, they are a tool for understanding plant communities, not an end in themselves. Still, many readers have told me that in a book on plant ecology, there should be a separate chapter on populations. I accepted this request, and have moved many population examples into a separate chapter. I also try to explain why one would study plant populations, the fundamental importance of exponential population growth to ecology and evolution, and how populations expand our understanding of processes and consequences altogether. I have also added some interesting stories about Brazil nuts and century plants.

I like this second edition better and I hope that you will agree. My aspiration in writing this book was to teach you about plants, to pass on wisdom from researchers who are now dead or retired (or both), to challenge young scientists to revisit certain problems, to share my enthusiasm for wild places, and to encourage a new generation of botanists and conservationists. I also wanted to prepare an accurate historical record of work, to counter-balance those who are deliberately distorting our field to benefit their own egos. As I worked on Plant Ecology I occasionally received fan mail for Wetland Ecology. One student recently emailed me from his hand-held device (as he studied for finals) that it had him laughing as he studied and that it was “such an enjoyable read that I hesitate to call it a text book.” Based on that email, I can add one more aspiration: may you enjoy a jolly good read.