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The synthesis of symplectic geometry, the calculus of variations, and control theory

offered in this book provides a crucial foundation for the understanding of many

problems in applied mathematics.

Focusing on the theory of integrable systems, this book introduces a class of

optimal control problems on Lie groups whose Hamiltonians, obtained through the

Maximum Principle of optimality, shed new light on the theory of integrable systems.

These Hamiltonians provide an original and unified account of the existing theory of

integrable systems. The book particularly explains much of the mystery surrounding

the Kepler problem, the Jacobi problem, and the Kowalewski Top. It also reveals the

ubiquitous presence of elastic curves in integrable systems up to the soliton solutions

of the non-linear Schroedinger’s equation.

Containing a useful blend of theory and applications, this is an indispensable guide

for graduates and researchers, in many fields from mathematical physics to space

control.

professor jurdjevic is one of the founders of geometric control theory. His

pioneering work with H. J. Sussmann was deemed to be among the most influential

papers of the century and his book, Geometric Control Theory, revealed the geometric

origins of the subject and uncovered important connections to physics and geometry.

It remains a major reference on non-linear control. Professor Jurdjevic’s expertise also

extends to differential geometry, mechanics and integrable systems. His publications

cover a wide range of topics including stability theory, Hamiltonian systems on Lie

groups, and integrable systems. He has spent most of his professional career at the

University of Toronto.
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Introduction

Upon the completion of my book on geometric control theory, I realized that

this subject matter, which was traditionally regarded as a domain of applied

mathematics connected with the problems of engineering, made important

contributions to mathematics beyond the boundaries of its original intent. The

fundamental questions of space control, starting with the possibility of navi-

gating a dynamical system from an initial state to a given final state, all the way

to finding the best path of transfer, inspired an original theory of differential

systems based on Lie theoretic methods, and the quest for the best path led to

the Maximum Principle of optimality. This theory, apart from its relevance for

the subject within which it was conceived, infuses the calculus of variations

with new and fresh insights: controllability theory provides information about

the existence of optimal solutions and the Maximum Principle leads to the

solutions via the appropriate Hamiltonians. The new subject, a synthesis of

the calculus of variations, modern symplectic geometry and control theory,

provides a rich foundation indispensable for problems of applied mathematics.

This recognition forms the philosophical underpinning for the book. The

bias towards control theoretic interpretations of variational problems provides

a direct path to Hamiltonian systems and reorients our understanding of

Hamiltonian systems inherited from the classical calculus of variations in

which the Euler–Lagrange equation was the focal point of the subject. This

bias also reveals a much wider relevance of Hamiltonian systems for problems

of geometry and applied mathematics than previously understood, and, at the

same time, it offers a distinctive look at the theory of integrable Hamiltonian

systems.

This book is inspired by several mathematical discoveries in the theory of

integrable systems. The starting point was the discovery that the mathematical

formalism initiated by G. Kirchhoff to model the equilibrium configurations of

a thin elastic bar subjected to twisting and bending torques at its ends can be

xi
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xii Introduction

reformulated as an optimal control problem on the orthonormal frame bundle

of R3, with obvious generalizations to any Riemannian manifold. On three-

dimensional spaces of constant curvature, where the orthonormal frame bundle

coincides with the isometry group, this generalization of Kirchhoff’s elastic

model led to a left-invariant Hamiltonian H on a six-dimensional Lie group

whose Hamiltonian equations on the Lie algebra showed remarkable similarity

with the equations of motion for the heavy top (a rigid body fixed at a point

and free to move around this point under the gravitational force). Further study

revealed an even more astonishing fact, that the associated control Hamiltonian

system is integrable precisely in three cases under the same conditions as the

the heavy top [JA; Jm].

This discovery showed that the equations of the heavy top form an invariant

subsystem of the above Hamiltonian system and that the solvability of the

equations for the top is subordinate to the integrability of this Hamiltonian

system (and not the other way around as suggested by Kirchhoff and his

“kinetic analogue” metaphor [Lv]. More importantly, this discovery suggested

that integrability of mechanical tops is better understood throgh certain

left-invariant Hamiltonians on Lie groups, rather than through conventional

methods within the confines of Newtonian physics.

The above discovery drew attention to a larger class of optimal control

problems on Lie groups G whose Lie algebra g admits a Cartan decomposition

g = p ⊕ k subject to

[p, p] ⊆ k, [p, k] = p, [k, k] ⊆ k. (I.1)

These optimal problems, defined by an element A ∈ p and a positive definite

quadratic form 〈 , 〉 on k, consist of finding the solutions of the affine control

system

dg

dt
= g(A + U(t)), U(t) ∈ k, (I.2)

that conform to the given boundary conditions g(0) = g0 and g(T) = g1, for

which the integral 1
2

∫ T

0 〈U(t), U(t)〉 dt is minimal. This class of optimal control

problems is called affine-quadratic. We show that any affine-quadratic problem

is well defined for any regular element A in p in the sense that for any any pair

of points g0 and g1 in G, there exists a time T > 0, and a control U(t) on [0, T]
that generates a solution g(t) in (2) with g(0) = g0 and g(T) = g1, and attains

the minimum of 1
2

∫ T

0 〈U(t), U(t)〉 dt.

Remarkably, the Hamiltonians associated with these optimal problems

reveal profound connections with integrable systems. Not only do they link

mechanical tops with geodesic and elastic problems, but also reveal the hidden
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Introduction xiii

symmetries, even for the most enigmatic systems such as Jacobi’s geodesic

problem on the ellipsoid, and the top of Kowalewski.

This book lays out the mathematical foundation from which these phenom-

ena can be seen in a unified manner. As L. C. Young notes in his classical

book on the calculus of variations and optimal control [Yg], problems of

optimality are not the problems to tackle with bare hands, but only when one is

properly equipped. In the process of preparing ourselves for the tasks ahead

it became necessary to amalgamate symplectic and Poisson geometry with

control theory. This synthesis forms the theoretic background for problems

of optimality. Along the way, however, we discovered that this theoretic

foundation also applies to the classic theory of Lie groups and symmetric

spaces as well. As a result, the book turned out to be as much about Lie groups

and homogeneous spaces, as is about the problems of the calculus of variations

and optimal control.

The subject matter is introduced through the basic notions of differential

geometry, manifolds, vector fields, differential forms and Lie brackets. The

first two chapters deal with the accessibility theory based on Lie theoretic

methods, an abridged version of the material presented earlier in [Jc]. The

orbit theorem of this chapter makes a natural segue to the chapters on Lie

groups and Poisson manifolds, where it is used to prove that a closed subgroup

of a Lie group is a Lie group and that a Poisson manifold is foliated by

symplectic manifolds. The latter result is then used to show that the dual of a

Lie algebra is a Poisson manifold, with its Poisson structure inherited from the

symplectic structure of the cotangent bundle, in which the symplectic leaves

are the coadjoint orbits. This material ends with a discussion of left-invariant

Hamiltonians, a prelude to the Maximum Principle and differential systems

with symmetries.

The chapter on the Maximum Principle explains the role of optimal control

for problems of the calculus of variations and provides a natural transition to

the second part of the book on integrable systems. The Maximum Principle is

presented through its natural topological property as a necessary condition for

a trajectory to be on the boundary of the reachable set. The topological view of

this principle allows for its strong formulation over an enlarged system, called

the Lie saturate, that includes all the symmetries of the system. This version of

the Maximum Principle is called the Saturated Maximum Principle. It is then

shown that Noether’s theorem and the related Moment map associated with the

symmetries are natural consequences of the Saturated Maximum Principle.

This material forms the theoretic background for the second part of the book,

which, for the most part, deals with specific problems. This material begins

with a presentation of the non-Euclidean geometry from the Hamiltonian point
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xiv Introduction

of view. This choice of presentation illustrates the relevance of the above

formalism for the problems of geometry and also serves as the natural segue

to the chapter on Lie groups G with an involutive automorphism σ and to

the geometric problems on G induced by the associated Cartan decomposition

g = p⊕k of the Lie algebra g of G. In these situations the Cartan decomposition

then yields a splitting Fp ⊕ Fk of the tangent bundle TG, with Fp and Fk the

families of left-invariant vector fields on G that take values in p, respectively k,

at the group identity e. The distributions defined by these families of vector

fields, called vertical and horizontal form a basis for the class of variational

problems on G described below.

Vertical distribution Fk is involutive and its orbit through the group identity

e is a connected Lie subgroup K of G whose Lie algebra is k. This subgroup is

contained in the set of fixed points of σ and is the smallest Lie subgroup of G

with Lie algebra equal to k, and can be regarded as the structure group for the

homogeneous space M = G/K.

Horizontal family Fp is in general not involutive. We then use the Orbit

theorem to show that on semi-simple Lie algebras the orbit of Fp through the

group identity is equal to G if and only if [Fp,Fp] = Fk, or, equivalently, if

and only if [p, p] = k. This controllability condition, translated to the language

of the principal bundles, says that [p, p] = k is a necessary and sufficient

condition that any two points in G can be connected by a horizontal curve

in G, where a horizontal curve is a curve that is tangent to Fp.

The aforementioned class of problems on G is divided into two classes

each treated somewhat separately. The first class of problems, inspired by

the Riemannian problem on M = G/K defined by a positive-definite, AdK-

invariant quadratic form 〈 , 〉 on p is treated in Chapter 8. In contrast to the

existing literature on symmetric spaces, which introduces this subject matter

through the geodesic symmetries of the underlying symmetric space [Eb; Hl],

the present exposition is based on the pioneering work of R. W. Brockett

[Br1; Br2] and begins with the sub-Riemannian problem of finding a horizontal

curve g(t) in G of minimal length
∫ T

0

√

〈

g−1(t)
dg
dt

, g−1(t)
dg
dt

〉

dt that connects

given points g0 and g1 under the assumption that [p, p] = k.

We demonstrate that this intrinsic sub-Riemannian problem is fundamental

for the geometry of the underlying Riemannian symmetric space G/K, in the

sense that all of its geometric properties can be extracted from g, without

ever descending onto the quotient space G/K. We show that the associated

Hamiltonian system is completely integrable and that its solutions can be

written in closed form as

g(t) = g0 exp t(A + B) exp (−tB), A ∈ p, B ∈ h. (I.3)

www.cambridge.org/9781107113886
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-11388-6 — Optimal Control and Geometry: Integrable Systems
Velimir Jurdjevic
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Introduction xv

The projection of these curves on the underlying manifold G/K coincides

with the curves of constant geodesic curvature, with B = 0 resulting in the

geodesics. We then extract the Riemannian curvature tensor

κ(A, B) = 〈[[A, B], A], B〉, A ∈ p, B ∈ p. (I.4)

from the associated Jacobi equation. The chapter ends with a detailed analysis

of the Lie algebras associated with symmetric spaces of constant curvature, the

setting frequently used in the rest of the text.

The second aforementioned class of problems, called affine-quadratic,

presented in Chapter 9, in a sense is complementary to the sub-Riemannian

case mentioned above, and is most naturally introduced in the language of

control theory as an optimal control problem over an affine distribution D(g) =
{g(A+U) : U ∈ k defined by an element A in p and a positive-definite quadratic

form Q(u, v) defined on k. The first part deals with controllability, as a first step

to the well-posedness of the problem. We first note a remarkable fact that any

semi-simple Lie algebra g, as a vector space, carries two Lie bracket structures:

the semi-simple Lie algebra and the semi-direct product Lie algebra induced

by the adjoint action of K on p. This means that the affine-quadratic problem

on a semi-simple Lie group G then admits analogous formulation on the semi-

direct product Gs = p ⋊ K. Hence, the semi-direct affine-quadratic problem

is always present behind every semi-simple affine problem. We refer to this

semi-direct affine problem as the shadow problem. We then show that every

affine system is controllable whenever A is a regular element in p. This fact

implies that the corresponding affine-quadratic problem is well posed for any

positive-definite quadratic form on k.

On semi-simple Lie groups G with K compact and with a finite center,

the Killing form is negative-definite on k and can be used to define an AdK

invariant, positive-definite bilinear form 〈 , 〉 on k. The corresponding optimal

control system is AdK-invariant and hence can be regarded as the canonical

affine-quadratic problem on G. It is then natural to consider the departures

from the canonical case defined by a quadratic form 〈Q(u), v〉 for some linear

transformation Q on k which is positive-definite relative to 〈 , 〉.
Any such affine-quadratic problem induces a left-invariant affine

Hamiltonian

H =
1

2
〈Q−1(Lk), Lk〉 + 〈A, Lp〉 (I.5)

on the Lie algebra g = p ⊕ k obtained by the Maximum Principle, where Lk

and Lp denote the projections of an element L ∈ g on the factors k and p.

The Hamiltonians which admit a spectral representation of the form
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xvi Introduction

dLλ

dt
= [Mλ, Lλ] with

Mλ = Q−1(Lk) − λA, and Lλ = −Lp + λLh + (λ2 − s)B

(I.6)

for some matrix B, are called isospectral. In this notation s is a parameter, equal

to zero in the semi-simple case and equal to one in the semi-direct case.

The spectral invariants of Lλ = Lp−λLk+(λ2 −s)B are constants of motion

and are in involution with each other relative to the Poisson structure induced

by either the semi-simple Lie algebra g or by the semi-direct product gs = p⋉k

(see [Rm], also [Bv; RT]).

We show that an affine Hamiltonian H is isospectral if and only

[Q−1(Lk), A] = [Lk, B] (I.7)

for some matrix B ∈ p that commutes with A. In the isospectral case every

solution of the homogeneous part

dLk

dt
= [Q−1(Lk), Lk] (I.8)

is the projection of a solution Lp = sB of the affine Hamiltonian system (I.6)

and hence admits a spectral representation

dLk

dt
= [Q−1(Lk) − λA, Lk − λB]. (I.9)

The above shows that the fundamental results of A. T. Fomenko and

V. V. Trofimov [Fa] based on Manakov’s seminal work on the n-dimensional

Euler’s top are subordinate to the isospectral properties of affine Hamitonian

systems on g, in the sense that the spectral invariants of Lk − λB are always in

involution with a larger family of functions generated by the spectral invariants

of Lλ = −Lp + λLh + (λ2 − s)B on g.

The spectral invariants of Lλ belong to a larger family of functions on the

dual of the Lie algebra whose members are in involution with each other, and

are sufficiently numerous to guarantee integrability in the sense of Liouville

on each coadjoint orbit in g∗ [Bv].

We then show that the cotangent bundles of space forms, as well as the

cotangent bundles of oriented Stiefel and oriented Grassmannian manifolds

can be realized as the coadjoint orbits in the space of matrices having zero

trace, in which case the restriction of isospectral Hamiltonians to these orbits

results in integrable Hamiltonians on the underlying manifolds. In particular,

we show that the restriction of the canonical affine Hamiltonian to the
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cotangent bundles of non-Euclidean space forms (spheres and hyperboloids)

is given by

H =
1

2
||x||2ǫ ||y||

2
ǫ −

1

2
(Ax, x)ǫ , ǫ = ±1. (I.10)

This Hamiltonian governs the motion of a particle on the space form under a

quadratic potential V = 1
2
(Ax, x)ǫ . We then show that all of these mechanical

systems are completely integrable by computing the integrals of motion

generated by the spectral invariants of the matrix Lλ. These integrals of

motion coincide with the ones presented by J. Moser in [Ms2] in the case of

C. Newmann’s system on the sphere.

Remarkably, the degenerate case A = 0 provides a natural explanation

for the enigmatic discovery of V.A. Fock that the solutions of Kepler’s

problem move along the geodesics of the space forms [Fk; Ms1; O1; O2].

We show that the stereographic projections from the sphere, respectively the

hyperboloid, can be extended to the entire coadjoint orbit in such a way that

the extended map is a symplectomorphism from the coadjoint orbit onto the

cotangent bundle of R
n/{0} such that H = 1

2
(x, x)ǫ(y, y)ǫ is mapped onto

E = 1
2
||p||2 − 1

||q|| and the energy level H = ǫ

2h2 is mapped onto the energy

level E = − 1
2
ǫh2. Therefore E < 0 in the spherical case and E > 0 in

the hyperbolic case. The Euclidean case E = 0 is obtained by a limiting

argument when ǫ is regarded as a continuous parameter which tends to zero.

This correspondence also identifies the angular momentum and the Runge–

Lenz vector associated with the problem of Kepler with the moment map

associated with the Hamiltonian H.

The chapter on the matrices in sln+1(R) also includes a discussion of a left-

invariant geodesic problem on the group of upper triangular matrices that is

relevant for the solutions of a Toda lattice system. Our exposition then turns

to Jacobi’s geodesic problem on the ellipsoid and the origins of its integrals of

motion. We show that there is a surprising and beautiful connection between

this classical problem and isospectral affine Hamiltonians on sln(R) that sheds

much light on the symmetries that account for the integrals of motion. The path

is somewhat indirect: rather than starting with Jacobi’s problem on the ellipsoid

x ·D−1x = 1, we begin instead with a geodesic problem on the sphere in which

the length is given by the elliptic metric
∫ T

0

√
(Dx(t) · x(t) dt. It turns out that

the Hamiltonian system corresponding to the elliptic problem on the sphere

is symplectomorphic to the Hamiltonian system associated with the geodesic

problem of Jacobi on the ellipsoid, but in contrast to Jacobi’s problem, the

Hamiltonian system on the sphere can be represented as a coadjoint orbit. It

turns out that the Hamiltonian system associated with the elliptic problem on
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xviii Introduction

the sphere is equal to the restriction of an isospectral affine Hamiltonian system

H on sln+1(R), and hence inherits the integrals of motion from the spectral

matrix Lλ. In fact, the Hamiltonian is given by

H =
1

2
〈D−1LkD−1, Lk〉 + 〈D−1, Lp, 〉 (I.11)

and its spectral matrix by Lλ = Lp − λLk + (λ2 − s)D. This observation

reveals that the mechanical problem of Newmann and the elliptic problem

on the sphere share the same integrals of motion. This discovery implies not

only that all three problems – the mechanical problem of Newmann, Jacobi’s

problem on the ellipsoid and the elliptic problem on the sphere – are integrable,

but it also identifies the symmetries that account for their integrals of motion.

These findings validate Moser’s speculation that the symmetries that account

for these integrals of motion are hidden in the Lie algebra sln+1(R) [Ms3].

The material then shifts to the rigid body and the seminal work of

S. V. Manakov mentioned earlier. We interpret Manakov’s integrability

results in the realm of isospectral affine Hamiltonians, and provide natural

explanations for the integrability of the equations of motion for a rigid body

in the presence of a quadratic Newtonian field (originally discovered by

O. Bogoyavlensky in 1984 [Bg1].

We then consider the Hamiltonians associated with the affine-quadratic

problems on the isometry groups SE3(R), SO4(R) and SO(1, 3). These

Hamiltonians contain six parameters: three induced by the left-invariant metric

and another three corresponding to the coordinates of the drift vector. The drift

vector reflects how the tangent of the curve is related to the orthonormal frame

along the curve. To make parallels with a heavy top, we associate the metric

parameters with the principal moments of inertia and the coordinates of the

drift vector with the coordinates of the center of gravity. Then we show that

these Hamiltonians are integrable precisely under the same conditions as the

heavy tops, with exactly three integrable cases analogous to the top of Euler,

top of Lagrange and the top of Kowalewski.

The fact that the Lie algebras so4(R) and so(1, 3) are real forms for

the complex Lie algebra so4(C) suggests that the Hamiltonian equations

associated with Kirchhoff’s problem should be complexified and studied on

so4(C) rather than on the real Lie algebras. This observation seems particularly

relevant for the Kowalewski case. We show that the Hamiltonian system that

corresponds to her case admits four holomorphic integrals of motion, one of

which is of the form

I4 =
(

1

2λ
z2

1 − bw1 + s
λ

2
b2

) (

1

2λ
z2

2 − b̄w2 + s
λ

2
b̄2

)

,
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where s = 0 corresponds to the semi-direct case and s = 1 to the semi-simple

case. For s = 0 and λ = 1 this integral of motion coincides with the one

obtained by S. Kowalewski in her famous paper of 1889 [Kw]. The passage

to complex Lie algebras validates Kowalewska’s mysterious use of complex

variables and also improves the integration procedure reported in [JA].

Our treatment of the above Hamiltonians reveals ubiquitous presence of

elastic curves in these Hamitonians. Elastic curves are the projections of

extremal curves associated with the functional 1
2

∫ T

0 κ2(s) ds. In Chapter 16 we

consider this problem in its own right as the curvature problem. Parallel to the

curvature problem we also consider the problem of finding a curve of shortest

length among the curves that satisfy fixed tangential directions at their ends and

whose curvature is bounded by a given constant c. This problem is referred to

as the Dubins–Delauney problem. Our interest in Delauney–Dubins problem is

inspired by a remarkable paper of L. Dubins of 1957 [Db] in which he showed

that optimal solutions exist in the class of continuosly differentiable curves

having Lebesgue integrable second derivatives, and characterized optimal

solutions in the plane as the concatenations of arcs of circles and straight line

segments with the number of switchings from one arc to another equal to at

most two.

We will show that the solutions of n-dimensional Dubins’ problem on space

forms are essentially three dimensional and are characterized by two integrals

of motion I1 and I2. Dubins’ planar solutions persist on the level I2 = 0, while

on I2 	= 0 the solutions are given by elliptic functions obtained exactly as in the

paper of J. von Schwarz of 1934 in her treatment of the problem of Delaunay

[VS]. Our solutions also clarify Caratheodory’s fundamental formula for the

problem of Delauney at the end of his book on the calculus of variations.

[Cr, p. 378].

This chapter also includes a derivation of the Hamiltonian equation asso-

ciated with the curvature problem on a general symmetric space G/K cor-

responding to the Riemannian symmetric pair (G, K). The corresponding

formulas show clear dependence of this problem on the Riemannian curvature

of the underlying space. We then recover the known integrability results on

the space forms explained earlier in the book, and show the connections with

rolling sphere problems discovered in [JZ].

The book ends with with a brief treatment of infinite-dimensional

Hamiltonian systems and their relevance for the solutions of the non-linear

Schroedinger equation, the Korteveg–de Vries equation and Heisenberg’s

magnetic equation. This material is largely inspired by another spectacular

property of the elastic curves – they appear as the soliton solutions in the

non-linear Schroedinger equation. We will be able to demonstrate this fact by
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xx Introduction

introducing a symplectic structure on an infinite-dimensional Fréchet manifold

of framed curves of fixed length over a three-dimensional space form. We will

then use the symplectic form to identify some partial differential equations of

mathematical physics with the Hamiltonian flows generated by the functionals

defined by the geometric invariants of the underlying curves, such as the

curvature and the torsion functionals.

Keeping in mind the reader who may not be familiar with all aspects of

this theory we have made every effort to keep the exposition self-contained

and integrated in a way that minimizes the gap between different fields.

Unavoidably, some aspects of the theory have to be taken for granted such

as the basic knowledge of manifolds and differential equations.
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