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Author’s introduction

B

It frequently happens in the history of thought that when a powerful

new method emerges the study of those problems which can be dealt with

by the new method advances rapidly and attracts the limelight, while

the rest tends to be ignored or even forgotten, its study despised.

This situation seems to have arisen in our century in the Philosophy of

Mathematics as a result of the dynamic development of metamathematics.

The subject matter of metamathematics is an abstraction of mathematics

in which mathematical theories are replaced by formal systems, proofs by

certain sequences of well-formed formulae, definitions by ‘abbreviatory

devices’ which are ‘theoretically dispensable’ but ‘typographically conve-

nient’.1 This abstraction was devised by Hilbert to provide a powerful

technique for approaching some of the problems of the methodology

of mathematics. At the same time there are problems which fall outside

the range of metamathematical abstractions. Among these are all prob-

lems relating to informal (inhaltliche) mathematics and to its growth, and

all problems relating to the situational logic of mathematical problem-

solving.

I shall refer to the school of mathematical philosophy which tends to

identify mathematics with its formal axiomatic abstraction (and the philo-

sophy of mathematics with metamathematics) as the ‘formalist’ school.

One of the clearest statements of the formalist position is to be found in

Carnap [1937]. Carnap demands that (a) ‘philosophy is to be replaced

by the logic of science . . .’, (b) ‘the logic of science is nothing other than

the logical syntax of the language of science . . .’, (c) ‘metamathematics is

the syntax of mathematical language’ (pp. xiii and 9). Or: philosophy of

mathematics is to be replaced by metamathematics.

1 Church [1956], I, pp. 76–7. Also cf. Peano [1894], p. 49 and Russell and Whitehead
[1910–13], I, p. 12. This is an integral part of the Euclidean programme as formulated in
Pascal [1659]: cf. Lakatos [1962], p. 158.
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Formalism disconnects the history of mathematics from the philosophy

of mathematics, since, according to the formalist concept of mathematics,

there is no history of mathematics proper. Any formalist would basically

agree with Russell’s ‘romantically’ put but seriously meant remark,

according to which Boole’s Laws of Thought (1854) was ‘the first book ever

written on mathematics’.2 Formalism denies the status of mathematics to

most of what has been commonly understood to be mathematics, and can

say nothing about its growth. None of the ‘creative’ periods and hardly

any of the ‘critical’ periods of mathematical theories would be admitted

into the formalist heaven, where mathematical theories dwell like the

seraphim, purged of all the impurities of earthly uncertainty. Formalists,

though, usually leave open a small back door for fallen angels: if it turns

out that for some ‘mixtures of mathematics and something else’ we can

find formal systems ‘which include them in a certain sense’, then they too

may be admitted (Curry [1951], pp. 56–7). On those terms Newton had to

wait four centuries until Peano, Russell, and Quine helped him into

heaven by formalising the Calculus. Dirac is more fortunate: Schwartz

saved his soul during his lifetime. Perhaps we should mention here the

paradoxical plight of the metamathematician: by formalist, or even by

deductivist, standards, he is not an honest mathematician. Dieudonné

talks about ‘the absolute necessity imposed on any mathematician who

cares for intellectual integrity’ (my italics) to present his reasonings in

axiomatic form ([1939], p. 225).

Under the present dominance of formalism, one is tempted to para-

phrase Kant: the history of mathematics, lacking the guidance of philo-

sophy, has become blind, while the philosophy of mathematics, turning

its back on the most intriguing phenomena in the history of mathematics,

has become empty.

‘Formalism’ is a bulwark of logical positivist philosophy. According to

logical positivism, a statement is meaningful only if it is either ‘tauto-

logical’ or empirical. Since informal mathematics is neither ‘tautological’

nor empirical, it must be meaningless, sheer nonsense.3

2 Russell [1901]. The essay was republished as chapter 5 of Russell’s [1918], under the title
‘Mathematics and the Metaphysicians’. In the 1953 Penguin edition the quotation can be
found on p. 74. In the preface of his [1918] Russell says of the essay: ’Its tone is partly
explained by the fact that the editor begged me to make the article “as romantic as
possible’’.’

3 According to Turquette, Gödelian sentences are meaningless ([1950], p. 129). Turquette
argues against Copi, who claims that since they are a priori truths but not analytic, they
refute the analytic theory of a priori ([1949] and [1950]). Neither of them notices that the
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The dogmas of logical positivism have been detrimental to the history

and philosophy of mathematics.

The purpose of these essays is to approach some problems of the

methodology of mathematics. I use the word ‘methodology’ in a sense akin

to Pólya’s and Bernays’ ‘heuristic’4 and Popper’s ‘logic of discovery’ or

‘situational logic’.5 The recent expropriation of the term ‘methodology of

mathematics’ to serve as a synonym for ‘metamathematics’ has undoubt-

edly a formalist touch. It indicates that in formalist philosophy of math-

ematics there is no proper place for methodology qua logic of discovery.6

peculiar status of Gödelian sentences from this point of view is that these theorems are
theorems of informal mathematics, and that in fact they are discussing the status of
informal mathematics in a particular case.

4 Pólya [1945], especially p. 102, and also [1954], [1962a]; Bernays [1947], esp. p. 187.
5 Popper [1934], then [1945], especially p. 90 (or the fourth edition [1962], p.97); and also

[1957], pp. 147 ff.
6 One can illustrate this, e.g. by Tarski [1930a] and Tarski [1930b]. In the first paper Tarski

uses the term ‘deductive sciences’ explicitly as a shorthand for ‘formalised deductive
sciences’. He says: ‘Formalised deductive disciplines form the field of research of meta-
mathematics roughly in the same sense in which spatial entities form the field of research
in geometry.’ This sensible formulation is given an intriguing imperialist twist in the
second paper: ‘The deductive disciplines constitute the subject-matter of the methodology
of the deductive sciences in much the same sense in which spatial entities constitute the
subject-matter of geometry and animals that of zoology. Naturally not all deductive
disciplines are presented in a form suitable for objects of scientific investigation. Those,
for example, are not suitable which do not rest on a definite logical basis, have no precise
rules of inference, and the theorems of which are formulated in the usually ambiguous
and inexact terms of colloquial language – in a word those which are not formalised.
Metamathematical investigations are confined in consequence to the discussion of formal-
ised deductive disciplines.’ The innovation is that while the first formulation stated that
the subject matter of metamathematics is the formalised deductive disciplines, the second
formulation states that the subject-matter of metamathematics is confined to formalised
deductive disciplines only because non-formalised deductive sciences are not suitable
objects for scientific investigation at all. This implies that the pre-history of a formalised
discipline cannot be the subject-matter of a scientific investigation – unlike the pre-history
of a zoological species, which can be the subject-matter of a very scientific theory of
evolution. Nobody will doubt that some problems about a mathematical theory can only
be approached after it has been formalised, just as some problems about human beings
(say concerning their anatomy) can only be approached after their death. But few will
infer from this that human beings are ‘suitable for scientific investigation’ only when they
are ‘presented in “dead” form’, and that biological investigations are confined in conse-
quence to the discussion of dead human beings – although, I should not be surprised if
some enthusiastic pupil of Vesalius in those glorious days of early anatomy, when the
powerful new method of dissection emerged, had identified biology with the analysis of
dead bodies.
In the preface of his [1941] Tarski enlarges on his negative attitude towards the

possibility of any sort of methodology other than formal systems: ‘A course in the
methodology of empirical sciences . . . must be largely confined to evaluations and
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According to formalists, mathematics is identical with formalisedmathemat-

ics. But what can one discover in a formalised theory? Two sorts of things.

First, one can discover the solution to problems which a suitably pro-

grammed Turing machine could solve in a finite time (such as: is a certain

alleged proof a proof or not?). No mathematician is interested in following

out the dreary mechanical ‘method’ prescribed by such decision procedures.

Secondly, one can discover the solutions to problems (such as: is a certain

formula in a non-decidable theory a theorem or not?), where one can be

guided only by the ‘method’ of ’unregimented insight and good fortune’.

Now this bleak alternative between the rationalism of a machine and the

irrationalism of blind guessing does not hold for live mathematics:7 an

investigation of informal mathematics will yield a rich situational logic for

working mathematicians, a situational logic which is neither mechanical

nor irrational, but which cannot be recognised and still less, stimulated, by

the formalist philosophy.

The history of mathematics and the logic of mathematical discovery, i.e.

the phylogenesis and the ontogenesis of mathematical thought,8 cannot

be developed without the criticism and ultimate rejection of formalism.

But formalist philosophy of mathematics has very deep roots. It is

the latest link in the long chain of dogmatist philosophies of mathematics.

For more than two thousand years there has been an argument between

dogmatists and sceptics. The dogmatists hold that – by the power of our

human intellect and/or senses – we can attain truth and know that we

criticisms of tentative gropings and unsuccessful efforts.’ The reason is that empirical
sciences are unscientific: for Tarski defines a scientific theory ‘as a system of asserted
statements arranged according to certain rules’ (ibid.).

7 One of the most dangerous vagaries of formalist philosophy is the habit of (1) stating
something – rightly – about formal systems; (2) then saying that this applies to ‘math-
ematics‘ – this is again right if we accept the identification of mathematics and formal
systems; (3) subsequently, with a surreptitious shift in meaning, using the term ‘math-
ematics’ in the ordinary sense. So Quine says ([1951], p. 87) that ‘this reflects the charac-
teristic mathematical situation; the mathematician hits upon his proof by unregimented
insight and good fortune, but afterwards other mathematicians can check his proof’. But
often the checking of an ordinary (informal) proof is a very delicate enterprise, and to hit
on a ‘mistake’ requires as much insight and luck as to hit on a proof: the discovery of
’mistakes’ in informal proofs may sometimes take decades – if not centuries.

8 Both H. Poincaré and G. Pólya propose to apply E. Haeckel’s ‘fundamental biogenetic
law’ about ontogeny recapitulating phylogeny to mental development, in particular to
mathematical mental development. (Poincaré [1908], p. 135, and Pólya [1962b].) To quote
Poincaré: ‘Zoologists maintain that the embryonic development of an animal recapitulates
in brief the whole history of its ancestors throughout geologic time. It seems it is the same
in the development of minds . . . For this reason, the history of science should be our first
guide’ (C. B. Halsted’s authorised translation, p. 437).
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have attained it. The sceptics on the other hand either hold that we cannot

attain the truth at all (unless with the help of mystical experience), or that

we cannot know if we can attain it or that we have attained it. In this great

debate, in which arguments are time and again brought up to date,

mathematics has been the proud fortress of dogmatism. Whenever the

mathematical dogmatism of the day got into a ‘crisis’, a new version once

again provided genuine rigour and ultimate foundations, thereby restor-

ing the image of authoritative, infallible, irrefutable mathematics, ‘the only

Science that it has pleased God hitherto to bestow on mankind’ (Hobbes

[1651], p. 15). Most sceptics resigned themselves to the impregnability of

this stronghold of dogmatist epistemology.9 A challenge is now overdue.

The core of this case-study will challenge mathematical formalism,

but will not challenge directly the ultimate positions of mathematical

dogmatism. Its modest aim is to elaborate the point that informal, quasi-

empirical, mathematics does not grow through a monotonous increase of

the number of indubitably established theorems but through the incessant

improvement of guesses by speculation and criticism, by the logic of

proofs and refutations. Since, however, metamathematics is a paradigm

of informal, quasi-empirical mathematics just now in rapid growth,

the essay, by implication, will also challenge modern mathematical dog-

matism. The student of recent history of metamathematics will recognise

the patterns described here in his own field.

The dialogue form should reflect the dialectic of the story; it is meant to

contain a sort of rationally reconstructed or ‘distilled’ history. The real history

will chime in in the footnotes, most of which are to be taken, therefore, as an

organic part of the essay.

9 For a discussion of the rôle of mathematics in the dogmatist-sceptic controversy, cf.
my [1962].
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Chapter 1

B

1. A problem and a conjecture

The dialogue takes place in an imaginary classroom. The class gets interested
in a PROBLEM: is there a relation between the number of vertices V, the
number of edges E and the number of faces F of polyhedra – particularly of
regular polyhedra – analogous to the trivial relation between the number of
vertices and edges of polygons, namely, that there are as many edges as
vertices: V = E? This latter relation enables us to classify polygons according
to the number of edges (or vertices): triangles, quadrangles, pentagons, etc.
An analogous relation would help to classify polyhedra.

After much trial and error they notice that for all regular polyhedra
V � E + F = 2.1 Somebody guesses that this may apply for any polyhedron

1 First noticed by Euler [1758a]. His original problem was the classification of polyhedra,
the difficulty of which was pointed out in the editorial summary: ‘While in plane
geometry polygons (figurae rectilineae) could be classified very easily according to the
number of their sides, which of course is always equal to the number of their angles, in
stereometry the classification of polyhedra (corpora hedris planis inclusa) represents a much
more difficult problem, since the number of faces alone is insufficient for this purpose.’
The key to Euler’s result was just the invention of the concepts of vertex and edge: it was he

who first pointed out that besides the number of faces the number of points and lines on the
surface of the polyhedron determines its (topological) character. It is interesting that on the
one hand he was eager to stress the novelty of his conceptual framework, and that he had to
invent the term ‘acies’ (edge) instead of the old ‘latus’ (side), since latus was a polygonal
concept while he wanted a polyhedral one, on the other hand he still retained the term
‘angulus solidus’ (solid angle) for his point-like vertices. It has been recently generally
accepted that the priority of the result goes to Descartes. The ground for this claim is a
manuscript of Descartes [c. 1639] copied by Leibniz in Paris from the original in 1675–6, and
rediscovered and published by Foucher de Careil in 1860. The priority should not be
granted to Descartes without a minor qualification. It is true that Descartes states that the
number of plane angles equals 2ϕ +2α-4 where byϕ hemeans the number of faces and by α

the number of solid angles. It is also true that he states that there are twice as many plane
angles as edges (latera). The conjunction of these two statements of course yields the Euler
formula. But Descartes did not see the point of doing so, since he still thought in terms of
angles (plane and solid) and faces, and did not make a conscious revolutionary change to
the concepts of 0-dimensional vertices, 1-dimensional edges and 2-dimensional faces as a
necessary and sufficient basis for the full topological characterisation of polyhedra.
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whatsoever. Others try to falsify this conjecture, try to test it in many
different ways – it holds good. The results corroborate the conjecture, and
suggest that it could be proved. It is at this point – after the stages problem
and conjecture – that we enter the classroom.2 The teacher is just going to
offer a proof.

2. A proof

teacher: In our last lesson we arrived at a conjecture concerning
polyhedra, namely, that for all polyhedra V � E + F = 2, where V is the
number of vertices, E the number of edges and F the number of faces.
We tested it by various methods. But we haven’t yet proved it. Has
anybody found a proof?

pupil sigma: ‘I for one have to admit that I have not yet been able to
devise a strict proof of this theorem . . . As however the truth of it has
been established in so many cases, there can be no doubt that it holds
good for any solid. Thus the proposition seems to be satisfactorily
demonstrated.’3 But if you have a proof, please do present it.

teacher: In fact I have one. It consists of the following thought-
experiment. Step 1: Let us imagine the polyhedron to be hollow, with a
surface made of thin rubber. If we cut out one of the faces, we can
stretch the remaining surface flat on the blackboard, without tearing it.
The faces and edges will be deformed, the edges may become curved,
but V and E will not alter, so that if and only if V � E + F = 2 for the
original polyhedron, V � E + F = 1 for this flat network – remember that
we have removed one face. (Fig. 1 shows the flat network for the case of
a cube.) Step 2:Now we triangulate our map – it does indeed look like a
geographical map. We draw (possibly curvilinear) diagonals in those
(possibly curvilinear) polygons which are not already (possibly
curvilinear) triangles. By drawing each diagonal we increase both E and
F by one, so that the total V � E + F will not be altered (fig. 2).

2 Euler tested the conjecture quite thoroughly for consequences. He checked it for prisms,
pyramids and so on. He could have added that the proposition that there are only five
regular bodies is also a consequence of the conjecture. Another suspected consequence is
the hitherto corroborated proposition that four colours are sufficient to colour a map. The
phase of conjecturing and testing in the case of V � E + F = 2 is discussed in Pólya ([1954],
vol. 1, the first five sections of the third chapter, pp. 35–41). Pólya stopped here, and does
not deal with the phase of proving – though of course he points out the need for a heuristic
of ’problems to prove’ ([1945], p. 144). Our discussion starts where Pólya stops.

3 Euler ([1758a], p. 119 and p. 124). But later ([1758b]) he proposed a proof.
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Step 3: From the triangulated network we now remove the triangles one
by one. To remove a triangle we either remove an edge – upon which one
face and one edge disappear (fig. 3(a)), or we remove two edges and a
vertex-uponwhich one face, two edges and onevertex disappear (fig. 3(b)).
Thus if V � E + F = 1 before a triangle is removed, it remains so after the
triangle is removed. At the end of this procedure we get a single triangle.
For this V � E + F = 1 holds true. Thus we have proved our conjecture.4

Fig. 1.

Fig. 2.

4 This proof-idea stems from Cauchy [1813a].
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pupil delta: You should now call it a theorem. There is nothing
conjectural about it any more.5

pupil alpha: I wonder. I see that this experiment can be performed for a
cube or for a tetrahedron, but how am I to know that it can be
performed for any polyhedron? For instance, are you sure, Sir, that any
polyhedron, after having a face removed, can be stretched flat on the

blackboard? I am dubious about your first step.
pupil beta: Are you sure that in triangulating the map one will always get a

new face for any new edge? I am dubious about your second step.
pupil gamma: Are you sure that there are only two alternatives – the

disappearance of one edge or else of two edges and a vertex – when one drops

the triangles one by one? Are you even sure that one is left with a single

triangle at the end of this process? I am dubious about your third step.6

teacher: Of course I am not sure.
alpha: But then we are worse off than before! Instead of one conjecture

we now have at least three! And this you call a ‘proof’!
teacher: I admit that the traditional name ‘proof’ for this thought-

experiment may rightly be considered a bit misleading. I do not think
that it establishes the truth of the conjecture.

(a) (b)

Fig. 3.

5 Delta’s view that this proof has established the ‘theorem’ beyond doubt was shared by
many mathematicians in the nineteenth century, e.g. Crelle [1826–7], 2, pp. 668–71,
Matthiessen [1863], p. 449, Jonquières [1890a] and [1890b]. To quote a characteristic
passage: ‘After Cauchy’s proof, it became absolutely indubitable that the elegant relation
V + F = E + 2 applies to all sorts of polyhedra, just as Euler stated in 1752. In 1811 all
indecision should have disappeared.’ Jonquières [1890a], pp. 111–12.

6 The class is a rather advanced one. To Cauchy, Poinsot, and to many other excellent
mathematicians of the nineteenth century these questions did not occur.
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delta: What does it do then? What do you think a mathematical proof
proves?

teacher: This is a subtle question which we shall try to answer later. Till
then I propose to retain the time-honoured technical term ‘proof’ for a
thought-experiment – or ‘quasi-experiment’ – which suggests a decomposition

of the original conjecture into subconjectures or lemmas, thus embedding it in
a possibly quite distant body of knowledge. Our ‘proof’, for instance,
has embedded the original conjecture – about crystals, or, say, solids – in
the theory of rubber sheets. Descartes or Euler, the fathers of the original
conjecture, certainly did not even dream of this.7

3. Criticism of the proof by counterexamples which are

local but not global

teacher: This decomposition of the conjecture suggested by the proof
opens new vistas for testing. The decomposition deploys the conjecture

7 Thought-experiment (deiknymi) was the most ancient pattern of mathematical proof. It
prevailed in pre-Euclidean Greek mathematics (cf. Á. Szabó [1958]).
That conjectures (or theorems) precede proofs in the heuristic order was a commonplace

for ancient mathematicians. This followed from the heuristic precedence of ‘analysis’ over
‘synthesis’. (For an excellent discussion see Robinson [1936].) According to Proclus, ‘. . . it
is . . . necessary to knowbeforehandwhat is sought’ (Heath [1925], 1, p. 129). ‘They said that
a theorem is that which is proposed with a view to the demonstration of the very thing
proposed’ – says Pappus (ibid. 1, p. 10). The Greeks did not think much of propositions
which they happened to hit upon in the deductive direction without having previously
guessed them. They called them porisms, corollaries, incidental results springing from the
proof of a theoremor the solution of a problem, results not directly sought but appearing, as
itwere, by chance,without any additional labour, and constituting, as Proclus says, a sort of
windfall (ermaion) or bonus (kerdos) (ibid. 1, p. 278). We read in the editorial summary to
Euler [1756–7] that arithmetical theorems ‘were discovered long before their truth has been
confirmed by rigid demonstrations’. Both the Editor and Euler use for this process of
discovery the modern term ‘induction’ instead of the ancient ‘analysis’ (ibid.). The heuristic
precedence of the result over the argument, of the theorem over the proof, has deep roots in
mathematical folklore. Let us quote some variations on a familiar theme: Chrysippus is said
to have written to Cleanthes: ‘Just send me the theorems, then I shall find the proofs’ (cf.
Diogenes Laertius [c. 200], VII. 179). Gauss is said to have complained: ‘I have had my
results for a long time; but I do not yet know how I am to arrive at them’ (cf. Arber [1945],
p. 47), and Riemann: ‘If only I had the theorems! Then I should find the proofs easily
enough.’ (Cf. Hölder [1924], p. 487.) Pólya stresses: ‘You have to guess a mathematical
theorem before you prove it’ ([1954], vol. 1, p. vi).
The term ’quasi-experiment’ is from the above-mentioned editorial summary to Euler

[1753]. According to the Editor: ‘As we must refer the numbers to the pure intellect alone,
we can hardly understand how observations and quasi-experiments can be of use in
investigating the nature of the numbers. Yet, in fact, as I shall show here with very good
reasons, the properties of the numbers known today have been mostly discovered by
observation . . .’ (Pólya’s translation; in his [1954], 1, p. 3 he mistakenly attributes the
quotation to Euler).
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