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4.15 Monte Carlo simulation results of the SK model in a transverse field in a
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dominant. (a) Temperature, T , dependence of the Binder ratio g for
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Γ = 0. (c) Transverse field, Γ, dependence of g for T = 0.65. (d) Scaling

plot of g when xΓ = 0.31 and T = 0.65. (e) Γ-dependence of g for

T = 0.6. (f) Scaling plot of g when xΓ = 0.31 and T = 0.6 (from Mukherjee
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4.16 Monte Carlo simulation results of the SK model in a transverse field in a
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g. (b) Scaling plot of the Binder ratio g when xT = 0.51 and Γc = 1.62 (from
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these methods is to obtain the best solution at the position indicated by the

star (T = 0, Γ = 0). 172

6.2 Schematic of the concept of quantum annealing to search for the

ferromagnetic ground state. 172

6.3 Ground state spin configuration of the Ising model with homogeneous

ferromagnetic interactions for N = 8. The magnetic field is applied for all

spins, i.e., hi = 0.1J for all i to avoid the trivial degeneracy when the

transverse field is absent. 177

6.4 Schematic of the schedules of annealing methods defined by Eqs. (6.21),

(6.22), and (6.23). 178

6.5 Time dependence of PQA(t), Pst
QA(Γ(t)), PSA(t), and Pst

SA(T (t)) for the Ising

model with homogeneous ferromagnetic interactions. (a) The schedule of

annealing is Γ(t)/J = T (t)/J = 3/ ln(t + 1). (b) The schedule of annealing

is Γ(t)/J = T (t)/J = 3/
√

t (from Kadowaki and Nishimori, 1998). 179

6.6 Time dependence of PQA(t), Pst
QA(Γ(t)), PSA(t), and Pst

SA(T (t)) of an Ising

model with random interactions. The schedule of annealing is Γ(t)/J =
T (t)/J = 3/

√
t (from Kadowaki and Nishimori, 1998). 180

6.7 Monte Carlo step, τ , dependence of residual energy εres(τ) obtained by

simulated annealing (classical annealing: CA) and quantum annealing for

various temperature T and the Trotter number P when PT = 1 (from

Marton̆ák et al., 2002). 182

6.8 Monte Carlo steps, τ , dependence of the excess length after annealing εexc

obtained by simulated annealing (SA) and quantum annealing (QA). In order

to compare the results by the simulation time, the result of QA multiplied by

P is also shown. The dotted line indicates the value of εexc ≃ 1.57 obtained
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by the Lin–Kernigham algorithm which is a standard local-search algorithm

(from Marton̆ák et al., 2004). 183

6.9 (Left panel) Total annealing time (Monte Carlo step) dependence of the

residual energy after simulated annealing (classical annealing, CA) and

quantum annealing (QA). The dotted line indicates the Gardner energy for

the 3-SAT problem, which is a lower bound of the energy of the metastable

states. Inset is the Trotter number, P, dependence of the residual energy for

the 3-SAT problem (Battaglia et al., 2004). (Right panel) Schedule of the

temperature and the transverse field JΓ = lncoth(βΓ(t)/P)/2β in field

cycling. (from Battaglia et al., 2005). 184

6.10 Monte Carlo step, τ , dependence of the residual energy obtained by quantum

annealing based on the Green’s function Monte Carlo method (GFMC) and

the path-integral Monte Carlo method (PIMC-QA), and simulated annealing

(classical annealing: CA) for the Ising model with random interactions. The

results of PIMC-QA and CA are from Fig. 6.7. Two types of simulations for

GFMC were performed using different trial wave function. When the trial

wave function is constant, results of upper diamonds are obtained (GFMC

ψT = 1). On the other hand, when the trial wave function is the Boltzmann

type, results of lower diamonds are obtained (GFMC-QA). The time unit in

GFMC is a step that a single-spin flip event is tried, while in PIMC-QA and

CA, time unit is a step that the update of all spins is tried. Thus, in order to

compare these results when the time unit is a single-spin flip, the results of

PIMC-QA and CA multiplied by N are also shown (from Stella and Santoro,

2007). 190

6.11 Schematic of division of blocks in DMRG. 192

6.12 Residual energy, Eres, dependence of τ when J = 1.6 obtained by the density

matrix renormalization group for the random field Ising model. The dotted

line is the guide to the eyes for logarithmic scaling (from Suzuki and Okada,

2007). 195

6.13 Residual energy depending on the annealing time τ when (a) J = 2.0 and

(b) J = 0.6 for the random field Ising model on the square lattice by mean-

field calculation based on the Bethe approximation. The obtained results of

quantum annealing by transverse field defined by Eq. (6.83) (TF) and by

transverse field and ferromagnetic interaction defined by Eq. (6.117) (FI) and

simulated annealing (thermal) are compared. These results are averaged out

over eighty configurations of random fields (from Suzuki et al., 2007). 201

6.14 Phase diagram of the magnetic materials LiHoxY1−xF4. The horizontal axis

corresponds to the concentration x of Ho3+ ions, and the vertical axis is the

temperature. PM, FM, and SG denote the paramagnetic phase, ferromagnetic

phase, and spin glass phase, respectively. The arrow shows the location of
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the decoupled cluster glass in which essentially isolated clusters with zero net

moments appears at zero temperature. The coupling between these clusters

increases with temperature; decoupled cluster glass does not appear at a finite

temperature (from Reich et al., 1990). 202

6.15 Schematic phase diagram of the temperature T versus the magnetic field Ht

corresponding to Γ of LiHoxY1−xF4 for x = 0.56. The arrows indicate the

quantum annealing (QA) process and the thermal annealing (simulated

annealing: SA) process toward the point at Ht = 7.2 kOe under T = 0.03 K

in the spin glass phase, respectively. 203

6.16 Time evolution of the coefficients of Ĥ0 and Ĥq in the adiabatic quantum

computation. 204

7.1 Quantum annealing vs thermal annealing in a graph of energy as a function

of configuration space. 256

7.2 The set of amplitudes following the first step of the Grover iteration in the

2-qubit case. 257

7.3 The set of amplitudes following the second step of the Grover iteration in the

2-qubit case. 258

7.4 8 qubit cell. 275

7.5 The vertex 0 in G is mapped into two such vertices to satisfy the physical

requirements of Cn, that is, no more than 4 couplings to each physical qubit. 275

8.1 The phase diagram of the one-dimensional three-spin interacting TFIM with

different paths along which the MCP (point A) is approached. Three different

critical lines are shown satisfying the relations h = 1, h = Jx − 1 and h =
−Jx −1, whereas, Paths I, II, III and IV are denoted by lines with arrows. A

shaded region also has been shown in the figure where quasicritical points

exist (from Rajak and Divakaran, 2014). 298

8.2 The plot shows χF as a function of h at Jx = 2,J3 = −1. Here the system

size is L = 100. The first peak that occurs at h = −3 is an Ising critical

point which shows linear scaling with L, and the second peak occuring at

h = 1 corresponds to the MCP where L5 scaling is found. The inset figure

shows that the FS oscillates close to the MCP, indicating the presence of

quasicritical points there (from Rajak and Divakaran, 2014). 301

8.3 The scaling of χF when the MCP is approaced along four different paths. The

plots shown in (a), (b) and (c) are for Paths I, II and III resulting in χF ∝ L5

that shows the effect of quasicritical points; whereas it is linear in L for Path

IV as shown in (d) due to the absence of quasicritical points along this path

or line (from Rajak and Divakaran, 2014). 302
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8.4 Variation of the LE as a function of h. The sharp dips in the LE are seen at

the Ising critical points (h = −2,0) as well as at anisotropic critical point at

h = 1 (from Rajak and Divakaran, 2014). 305

8.5 Variation of LE as a function of scaled time t/Lα to highlight the scaling of

time period with system size L, with α being the scaling exponent (T ∝ Lα )

as obtained in the text for various types of critical points, i.e., (a) the

anisotropic critical point where T ∝ L, (b) multicritical point where T ∝ L2

and (c) quasicritical point with T ∝ L3. In (d), we present the almost linear

variation of lnL with t2 for small times with L = 100 at the various critical

points confirming the general small time behavior given by L ∼ e−Γt2

(from Rajak and Divakaran, 2014). 306

8.6 The figure shows a schematic representation of the Kitaev model on a

honeycomb lattice with the interactions denoted by J1, J2 and J3;

~M1 =
√

3
2

î− 3
2

ĵ and ~M2 =
√

3
2

î+ 3
2

ĵ are the spanning vectors of the lattice

(from Sharma and Rajak, 2012). 307

8.7 The phase diagram of the Kitaev model in which all the points satisfy the

relation J1 + J2 + J3 = 4. The gapless phase of the model is given by the

inner equilateral triangle satisfying the relations J1 ≤ J2 + J3, J2 ≤ J3 + J1

and J3 ≤ J1 + J2. The study of LE is carried out along Paths I, II and III

where J3 is varied (from Sharma and Rajak, 2012). 309

8.8 The plots show variation of LE with the parameter J3 (J3 is changed Path

I). The LE shows a sharp dip at J3 = 2− δ (point A) and following a small

but finite revival throughout the gapless phase, it further decays at point B,

J3 = 0 (see Fig. (8.7)). Here, Nx = Ny = 200, δ = 0.01 and t = 10. Inset

(a) shows LE as a function of J3 when the change in J3 is carried out along

Path II (J1 = J2 + 1) with Nx = Ny = 200, δ = 0.01 and t = 10 exhibiting a

sharp dip at point P (J3 = 2−δ ) and again there is a sharp increase at point Q

(J3 = 1−δ ). Inset (b) shows the dip in LE at J3 = 2−δ when J3 is changed

along the line J1 + J3 = 4 (Path III). For this case, N = 400, δ = 0.01 and

t = 10 (from Sharma and Rajak, 2012). 311

8.9 The LE as a function of time t at the AQCP A (see Fig. 8.7) with

J1 = J2 = 1, δ = 0.01 and J3 = 2− δ , considering Nx(= 100) as fixed and

Ny as changing confirms the scaling relations discussed in the text. The inset

figure shows that the time period of the collapse and revival does not depend

on Nx (from Sharma and Rajak, 2012). 312

8.10 The variation of LE with time for different values of δ when J-quench and

h-quench are performed at L1 = L/2 and L′ = L/3 respectively. The

h-quenching here is made by changing its value from 1 to 1+δ at L′. In the

case of only J-quenching (i.e., δ = 0 case), the LE marks a peak at

t3 = L/vmax = 150 and T = 2t3. Here, vmax = 2 and L = 300. By applying
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both the local quenches simultaneously at time t = 0, we find a small peak

at t ′ = 50 and a relatively stronger peak at t ′′ = 200. It can also be noted that

there are small fluctuations close to t1 = 100 which is more clear for the

δ = 1 curve (from Rajak and Divakaran, 2016). 317

8.11 Main: The time evolution of the LE for two local quenches having L1 =
100,LA = 100 and L = 300 and different L′. The first peak in the LE is seen

at time t ′ = 2(L1−L′)/vmax; t ′ = 25 and 50 for L′ = L/4 and L/6 respectively.

The other time scales are given by t3 = 100, t4 = 200 and t ′′. It can be noted

that t ′′ = 225 and 250 for L′ = 75 and 50, respectively. Inset: The LE as

a function of time t for only h-quench at L/3 with L = 300. Time scales

t1 = 100 and t2 = 200 both are observed in this case. It is easy to find that

the magnitude of decay in this case is very small (from Rajak and Divakaran,

2016). 318

8.12 The plot shows time evolution of the entanglement entropy having L1 = LA =
100 and different values of L′. For L′ = L/4, the departure from the only J-

quench case is seen at t ′/2 = 12.5, whereas at t ′ = 25, QP2
L get in the system

B after reflection at L′ in which QP2
R , the other partner, is already present. The

EE keeps on decreasing till QP2
R enters system A at time t = L2 = 200. A dip

is also seen at t = t ′′ = 225 where QP2
L and QP2

R interchanges their systems.

In a similar fashion, we can make an argument for the time evolution of EE

when L′ = 3L/4. The deviation from the case of J-quench alone starts at t =
62.5. There is a sharp decay in EE at t = 100 when QP2

L enters system B. On

the other hand, QP2
R goes into system A at t = 125 that results in an increase in

the EE since its other partner remains in system B. The normal rise at t = 200

which is clearly present for the single quenching (J-quenching) case can also

be found here. This may be an artefact of getting a transmitted component

of the QP wavepacket at L′ which indicates that the reflection of the QPs at

L′ is not perfect, as already discussed in Sec. 8.5.4. We can also observe the

time scales t ′′ = 225 and T = 300 (from Rajak and Divakaran, 2016). 320

8.13 (a) Variation of the EE as a function of time following single and double

quenches when the total spin chain is in the ferromagnetic region at h = 0.5.

Here, we consider L1 = 100, LA = 100 and L = 300 and different L′. For

L′ = L/4, the EE deviates from the only J- quenching case, starting at t = t ′/2

with t ′ = 50 and vmax = 2h = 1. For time t > 50, both the quasiparticles QP2
L

and QP2
R exist in subsystem B that leads to the decrease in the EE continuing

up to t4 = 400. Again, for L′ = L/5, we find t ′ = 80 and observe the expected

behavior. The explanation of the absence of t ′′ is given in the text. The plot

(b) is the same with h = 0.99. The observed time scales are given by t ′ =
25.25, t ′/2, t3(∼ 101) t4(∼ 202) and t ′′(∼ 227) calculated with vmax = 1.98

(from Rajak and Divakaran, 2016). 322
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8.14 The plot shows fq as a function of q for a critical chain with L1 = 100,

L′ = 60 and L = 300. The dashed line represents the case of the h-quench

alone which is clearly smaller than the J-quench alone (the dotted line) by

an order of magnitude. The solid line is for the double quench, which almost

overlaps with the J-quenching case. A similar type of behavior can also be

observed for a spin chain residing in the ferromagnetic region (from Rajak

and Divakaran, 2016). 324

8.15 Phase diagram of the p-wave superconducting model in one dimension (see

Eq. (8.52)). In this diagram, Phases I and II are topologically non-trivial,

whereas, Phase III is topologically trivial. Sudden quenching in this system

is performed along Paths A and B (see Sec. 8.8). 329

8.16 Schematic representation of the Majorana chain with the Hamiltonian as

defined in Eq. (8.57), considered a virtual ladder. It may be thought that the

middle of each vertical bond here represents a fermionic site j which

supports two Majorana fermions a j and b j represented by black and gray

filled circles respectively with their intra-site interaction as µ . In this

representation, other two couplings are symbolized by diagonal links. 330

8.17 Schematic representation of the Hamiltonian in Eq. (8.57) with different

special conditions as defined in the text. (a) µ 6= 0, w = ∆ = 0, (b) µ = 0,

w = ∆ and (c) µ = 0, w = −∆. In (a), the pair of Majoranas at each site is

connected to each other by the strength µ resulting in a topologically trivial

phase. (b) In this regime, there are two isolated Majorana modes a1 and bN

at the left end and right end respectively. (c) This regime also represents a

topologically non-trivial phase with two isolated Majorana modes b1 and aN . 331

8.18 Two Majorana edge states are localized at two ends of a 100-site open

Majorana chain in Phase I (∆ = 0.1 and µ = 0.0) with an exponential decay

into the bulk of the chain. j labels the Majorana sites 1,2, ...200 (from Rajak

and Dutta, 2014). 332

8.19 (a)–(c) Schematic representation of three terms in Eq. (8.63) using the

language of Majorana fermions where (a), (b), and (c) describe the first,

second, and third terms respectively. The unpaired Majorana modes

enclosed in dotted lines exist at two ends of the chain. (d) The plot shows

the phase diagram of the generalized cluster model of Eq. (8.63) at zero

temperature for JXZX > 0. The thick solid curves are the phase boundaries

where the energy gap vanishes at a particular k. The different phases like

ferromagnetic, antiferromagnetic, paramagnetic, cluster and dual cluster are

represented by F, AF, P, C and C* respectively. The superscripts in F and

AF denote the direction of the order. (e) These phases are determined by

string order parameters. The string order parameters OXZX , OXX and OYY
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have been calculated along the thick dotted line JY ZY/JXZX = 0.5 (see

Fig. 8.19(d)) using the iTEBD (from Ohta et al., 2015). 335

8.20 The diagram for the energy levels of the Majorana chain of system size N =
100 as a function of ξ = ∆/w with µ = 0 and w = 1 considering (a) open

boundary condition and (b) periodic boundary condition, respectively. One

can observe that two zero energy Majorana edge modes exist in case (a)

but not in case (b). It is mentioned that the energy spectrum is scaled by

a constant factor 1/4 in Eq. (8.65) compared to Eq. (8.54) (from Rajak and

Dutta, 2014). 337

8.21 Majorana survival probability of a Majorana edge state for various quench

protocols along Path A and probability of Majorana at certain time t after

quench. (a) There is a sudden decay in the MSP due to a quenching from

Phase I (∆ = 0.1) to Phase II (∆ =−0.1) and after that, it remains minimum

without any revival. (b) On the other hand, following a quench from Phase

I (∆ = 0.1) to the QCP (∆ = 0.0), MSP exhibits nearly perfect oscillation

with a time period scaling linearly with the system size N. (c) Probability

of the Majorana end mode at time t = 100 for quenching at the QCP with

the Majorana site j. At this time, the probability of the Majorana mode is

maximum, close to the center of the chain (from Rajak and Dutta, 2014). 338

8.22 A sudden quench is performed within Phase I from (∆ = 0.2 and µ = 0.0) to

(∆ = 0.1 and µ = 0.0) and the MSP becomes (a) a rapidly oscillating

function of time t having nearly 0.8 mean value and (b) probability of the

Majorana end mode at t = 100, with the Majorana sites j following the

quench (from Rajak and Dutta, 2014). 340

8.23 Phase diagram of the system with Hamiltonian in Eq. (8.52) for various

phases of complex hopping term (a) φ = 0, (b) φ = π/4, (c) φ = 2π/5 and

(d) φ = π/2. In this plot, I and II represent two different topological phases,

whereas III is the topologically trivial phase. The path µ = 0 is represented

by the vertical arrow along which quenching is performed (from Rajak

et al., 2014). 341

8.24 The energy levels of the Hamiltonian in Eq. (8.52) as a function of parameter

ξ = ∆

w0
(where w0 = 1) for (a) periodic and (b) open boundary conditions

with N = 100 and φ = π/10. The inverted energy levels inside the gapless

phase of the system is indicated by the red color (from Rajak et al., 2014). 343

8.25 (a) Variation of the probability of defect (Pdef) with τ for different values of φ

exhibiting dip at different values of τ ≥ τc where the value of τc increases as

φ decreases. (b) The probability of Majorana (Pm) exhibits a peak precisely

at those values of τ where Pdef shows dips. Here, N = 100 (from Rajak et al.,

2014). 345
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8.26 (a) Pdef, Pneg and Pm as a function of τ with φ = π/10 exhibit that all of them

add up to unity for any τ . (b) The plot shows that ln(τc) varies almost linearly

with ln(sin φ ) having slope (= −0.9) nearly equal to −1 (from Rajak et al.,

2014). 346

8.27 (a) Variation of Pm as a function of τ for different system sizes N with φ =
π/5. Pm exhibits peak at different values of τ ≥ τc. (b) The figure shows

a plot between lnτc and lnN for φ with slope (= 0.94) nearly equal to 1

suggesting τc ∼ N (from Rajak et al., 2014). 347

8.28 Variation of Pdef as a function of τ determining overlaps between the time-

evolved Majorana state at final time and different number of positive energy

states (near zero energy) at the final parameter values. Let us consider the

case with φ = π/10 and N = 100, where the number of inverted energy levels

in both positive and negative sides of the zero energy is given by 18 (see

Ref. (Rajak et al., 2014)). The plot indicates that for τ ≤ τc (∆t < ∆tth), the

initial edge Majorana mixes with all the bulk energy levels. For τ ≥ τc, on

the other hand, the Pdef determined by using only the inverted positive bulk

energy levels nearly coincides with the exact Pdef procured considering all

positive energy levels. This clearly verifies that quenched Majorana state

interacts only with the inverted energy levels for a passage time ∆t ≥ ∆tth
(from Rajak et al., 2014). 348

9.1 Title and abstract from the first published paper proposing the idea that

quantum tunneling across the free energy barriers in the

Sherrington–Kirkpatrick spin glass model can lead to an efficient way of

searching for its ground state(s). It was argued that “quantum tunneling

between the classical ‘trap’ “states”, separated by infinite (but narrow)

barriers in the free energy surface, is possible, as quantum tunneling

probability is proportional to the barrier area which is finite.” They

suggested that any amount of transverse field would lead to the collapse of

the overlap distribution to a delta function. It may be noted that

computationally hard problems can often be mapped into such long-range

spin glass models; the advantage of quantum tunneling in such quantum

spin glass models has lead ultimately to the development of the quantum

annealer. A related reference is Chakrabarti (1981). (Permission to use title

and abstract from the paper is given by American Physical Society) 360

9.2 Title and abstract from the first paper reporting on the experimental studies

of an Ising spin glass sample under the influence of a tunable transverse field.

The observed nature of the tunneling induced phase diagram compared well

with that predicted by Ray et al. (1989). (Permission to use title and abstract

from the paper is given by American Physical Society) 361
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9.3 Title and abstract of the first published paper demonstrating the search of the

ground state of a Lennard–Jones system using ‘quantum annealing’ (term

appearing for the first time in paper title). (Permission to use title and abstract

from the paper is given by Elsevier) 361

9.4 Title and abstract from a paper demonstrating the clear advantage of

quantum annealing in Ising models with frustrating interactions. It was

found that in case of quantum annealing not only there was a higher

probability of the initial state to converge in the ground state of such models

but also the convergence time was comparatively less than that of simulated

annealing. A related reference is Chakrabarti et al. (1996). (Permission to

use title and abstract from the paper is given by American Physical Society) 362

9.5 Title and abstract of the first published experimental paper reporting on the

advantage of quantum annealing in finding the ground state of disordered

magnets. Such experimental observations have put quantum annealing on

firm physical ground. Some related references are Wu et al. (1991), Wu et

al. (1993), Bitko et al. (1996), Kadowaki and Nishimori (1998). (Permission

to use title and abstract from the paper is given by The American Association

for the Advancement of Science) 363

9.6 Title and abstract of a paper reporting on the zero temperature quantum

adiabatic algorithm for NP-hard problems. A related reference here is

Kadowaki and Nishimori (1998). (Permission to use title and abstract from

the paper is given by The American Association for the Advancement of

Science) 364

9.7 Title and abstract of a paper on the application of quantum annealing in

estimating the remaining fraction of undesired solutions in some

optimization searches in Ising spin glasses. They also indicated the relative

fastness of quantum annealing with respect to simulated annealing. Some

related references here are Wu et al. (1993), Finnila et al. (1994), Kadowaki

and Nishimori (1998), Brooke et al. (1999), Brooke et al. (2001) and Farhi

et al. (2001). (Permission to use title and abstract from the paper is given by

The American Association for the Advancement of Science) 365

9.8 Two important early reviews helped the subsequent development of quantum

annealing significantly. Title and abstract for the first review on adiabatic

quantum computation and annealing, proclaiming that the idea of quantum

tunneling through the infinitely high energy barriers in long-range frustrated

spin glasses was introduced in Ray et al. (1989). Other related references here

are Finnila et al. (1994), Chakrabarti et al. (1996), Kadowaki and Nishimori

(1998), Brooke et al. (1999) and Das et al. (2005). (Permission to use title

and abstract from the paper is given by Institute of Physics) 366
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9.9 Title and abstract from the second (early) review on quantum annealing and

quantum computation. Authors summarized that following the indication

of Ray et al. (1989), both theoretical and experimental successful studies on

QA made this technique extremely useful in solving hard optimization

problems, in binary to analog quantum computers. Some related references
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Preface

This book intends to introduce the readers to the developments in the researches on phase

transition of quantum spin glasses, their dynamics near the phase boundary and applications

in the efforts to solve multi-variable optimization problems by using quantum annealing. In

view of the recent successes of both theoretical and experimental studies, major efforts were

undertaken in employing these ideas in developing some prototype quantum computers

(e.g., by D-wave Systems Inc.) and these have led to a revolution in quantum technologies.

The ideas developed in solving the dynamics of frustrated random systems like spin

glasses, in particular of the celebrated Sherrington–Kirkpatrick model (SK model) (1975),

have led to the understanding of the intrinsic nature of the problems involved in searches

for the least cost solutions in multi-variable optimization problems. In particular, the

pioneering idea of simulated or classical annealing technique by Kirkpatrick, Gelatt, and

Vecchi (1983) had already led to major breakthroughs. It has also led to some crucial

concepts regarding how the hardness of such optimization problems come about through

their mapping to the ruggedness of the cost function landscape of the SK model. The idea

that quantum fluctuations in the SK model can lead to some escape routes by tunneling

through such macroscopically tall but thin barriers (Ray, Chakrabarti, and Chakrabarti,

1989) those which are difficult to scale using classical fluctuations, have led to some

important clues. With this and some more developments, the quantum annealing technique

was finally launched through a landmark paper by Kadowaki and Nishimori in 1998. Since

then, as mentioned earlier, a revolution has taken place through a surge of outstanding

papers both in theory and in technological applications, leading finally to the birth of this

new age of quantum technologies.

This book intends to present and review these developments in a step-by-step manner,

mainly from the point of view of theoretical statistical physicists. We hope the book will

also be useful to physicists in general and to computer scientists as well. As one can easily

see, the subject is growing at a tremendous rate today, and many more materials will soon

be needed to supplement our knowledge on quantum annealing. We believe, however, the

materials discussed in the book will prove indispensable for young researches and Ph. D
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xxxiv Preface

course students who are eager to get into this exciting field of research! Indeed, we have

added three notes by other experts (B. Tamir and E. Cohen, A. Rajak and U. Divakaran, and

S. Mukherjee) to provide some complementary ideas and historical accounts for the benefit

of the readers.

This book is dedicated to the loving memory of Professor Jun-ichi Inoue with whom

we shared many ideas and developed part of the studies described here. Indeed, we had an

early plan to write this book together with him. His untimely death has robbed us of that

opportunity. We still hope, he would be delighted to see this book and its contents.

We are grateful to the Cambridge University Press, in particular to M. Choudhary,

R. Dey, and D. Majumdar, for their immense patience and constant encouragements.

We do hope the book will be useful and enjoyable to the readers.

Shu Tanaka, Tokyo

Ryo Tamura, Tsukuba

Bikas K. Chakrabarti, Kolkata

August 2016
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