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Statistical Distributions

The Normal Probability Distribution

The normal probability distribution has a long and rich history. Three names are always
mentioned: Abraham de Moivre (b. 1667), Carl Friedrich Gauss (b. 1777), and Pierre-
Simon Laplace (b. 1799). De Moivre is usually credited with the discovery of the normal
distribution. Gauss introduced a number of important mathematical and statistical concepts
derived from a normal distribution (1809). Adolphe Quetelet (b. 1796) suggested that the
normal distribution was useful for describing social and biologic phenomena. In his study of
the “average man” Quetelet characterized heights of army recruits with a normal distribution
(1835). Twentieth-century statisticians Karl Pearson (b. 1857) and R. A. Fisher (b. 1890)
added a few details, producing the modern normal distribution. Today’s normal probability
distribution has other less used names: Gaussian distribution, “bell-shaped curve,” and
Gauss-Laplacian distribution.

The algebraic expression of the normal probability distribution for a value denoted x is

f (x) = 1

σX

√
2π

e− 1
2

[
x−μ

σX

]2

.

The expression shows that the value of the function f(x) is defined by two parameters: a
mean value represented by μ and a variance represented by σ 2

X (Chapter 27). The mean value
μ determines location, and variance σ 2

X determines spread or shape of the normal distribution
(Figure 1.1). The usual estimates of these two parameters are the sample mean value (denoted
x̄) and the sample variance (denoted S2

X ). For a sample of n values {x1, x2, . . . , xn},

sample estimated mean value = x̄ = 1

n

∑
xi

and

sample estimated variance = S2
X = 1

n − 1

∑
(xi − x̄)2 i = 1, 2, . . . , n [13].

From the mathematical expression, the height f(x − μ) equals the height f(μ − x), making
the normal distribution symmetric relative to the mean value μ. In addition, again seen from
the expression f(x), the normal distribution is always positive because e−z2

is always positive
for any value of z. The expression f(x) dictates that a single maximum value occurs at the
value x = μ and is f (xmax) = f (μ) = 1/(σX

√
2π ) because e−z2

is always less than 1 except

Note: the chapter number in parentheses indicates the chapter where the discussed statistical tool is further
described and applied in a different context.

3

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-11308-4 - A Biostatistics Toolbox for Data Analysis
Steve Selvin
Excerpt
More information

http://www.cambridge.org/9781107113084
http://www.cambridge.org
http://www.cambridge.org


4 Statistical Distributions

Table 1.1 Description: A Few Selected Critical Values and Their Cumulative
Probabilitiesa from a Standard Normal Distribution (μ = 0 and σ = 1)

Standard normal distribution

Critical values (z) −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

Probabilities (1 − α) 0.023 0.067 0.159 0.309 0.500 0.691 0.841 0.933 0.977
Probabilities (α) 0.977 0.933 0.841 0.691 0.500 0.309 0.159 0.067 0.023

a P(Z � z) = 1 − α making the value z a critical value (percentile/quantile) for a specific
cumulative probability denoted 1 − α.

when z = x − μ = 0. Therefore, the symmetric normal distribution has mean value, median
value, and mode at the center of the distribution and “tails” that extend indefinitely for both
positive and negative values of x (Figure 1.1). The total area enclosed by a normal probability
distribution is 1.

A principal role of the normal distribution in statistics is the determination of probabilities
associated with specific analytic results. In this context, the term critical value is frequently
used to identify values from a normal distribution that are otherwise called quantiles or per-
centiles. These values and their associated probabilities typically arise as part of a statistical
evaluation. For example, value z = 1.645 is the 95th percentile of a normal distribution with
mean value = μ = 0 and variance = σ 2 = 1 but is usually referred to as the critical value
at the 95% significance level when applied to test statistics, confidence intervals, or other
statistical summaries.

An essential property of the normal probability distribution is that a standard distribution
exists; that is, a single normal distribution can be used to calculate probabilities for values
from any normal distribution using the parameters μ and σ 2

X . This standard normal distribu-
tion has mean value μ = 0 and variance σ 2 = 1. Table 1.1 gives a sense of the relationship
between the critical values (quantiles/percentiles) and their associated probabilities from
this standard normal distribution. Of course, more extensive tables exist, and typically these
probabilities are computer calculated as part of a statistical analysis.

|

X X

Figure 1.1 Four Normal Probability Distributions with Different Mean Values and the Same
Variance (Left) and Four Normal Distributions with the Same Mean Value and Different

Variances (Right)
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The Normal Probability Distribution 5

For example, the probability that a random value from the standard normal distribution is
less than a critical value 1.5 is 0.933, called a cumulative normal probability. In symbols,
for a random value represented by Z from a standard normal distribution, then

cumulative normal probability = P(Z ≤ z) = P(Z ≤ 1.5) = 0.933.

Geometrically, the cumulative probability P(Z � z) is the area enclosed by the normal
distribution to the left of the value z.

A miraculous property of the normal distribution allows this standard normal distribution
to be used to calculate probabilities for any normal distribution. The process of obtaining a
probability for a specific value is simply a change in measurement units. When a normally
distributed value is measured in terms of standard deviations (square root of the variance,
denoted σ X) relative to above or below the mean value, the associated cumulative probabilities
from all normal distributions are the same. For example, the probability that a value is more
than two standard deviations below a mean value μ is 0.023 for all normal distributions. Thus,
from any normal distribution P(X � μ − 2σ X) = 0.023. Therefore, to find a probability for
a specific value, the units of the original value are converted to units of standard deviations.
For example, an observation of x = 25 feet sampled from a normal probability distribution
with mean value μ = 10 and variance σ 2

X = 100 is Z = (x − μ)�σ X standard deviations
above the mean, and Z has a normal probability distribution with mean μ = 0 and standard
deviation σ X = 1 (Table 1.1). Therefore, the probabilities associated with Z are the same
as the probabilities associated with X when the value x is converted to standard deviations.
Specifically, the value x = 25 feet is z = (25 − 10)�10 = 1.5 standard deviations above the
mean, making P(X � 25.0) = P(Z � 1.5) = 0.933 because P(X � x natural units) = P(Z �
z standard deviation units) from a standard normal distribution (Table 1.1).

To determine a value in natural units associated with a specific probability, the process is
reversed. The value Z from the standard normal distribution is converted to original units.
The critical value z1−α associated with the probability 1 − α is used to calculate X = μ +
z1−ασ X where z1–α represents a value from the standard normal distribution. The symbol
1 − α traditionally represents the cumulative probability P(X � x) = 1 − α making x the (1 −
α) – level quantile or the (1 − α) × 100 percentile of the normal probability distribution of a
variable X. For the example, when 1 − α = 0.933, then z0.933 = 1.5 (Table 1.1) and X = 10 +
1.5(10) = 25 feet for a normal probability distribution with mean value μ = 10 and variance
σ 2

X = 100. As required, the associated probability is again P(Z � 1.5) = P(X � 25.0) =
0.933. Figure 1.2 schematically displays the relationship between cumulative probabilities,
observed values, and standard deviations for all normal distributions.

From the symmetry of the normal probability distribution f(x), it follows that the proba-
bilities are symmetric. For a normally distributed value X, then P(X � c) = P(X � − c). For
example, for a standard normal distribution P(Z � 1.0) = P(Z � − 1.0) = 0.159 because
P(Z � − 1.0) = 0.159 (Table 1.1 and Figure 1.2). In symbols, for example,

P(X ≤ μ − 2σ ) = P(X ≥ μ + 2σ ).

The ubiquitous role of the normal distribution in statistical analysis stems from the central
limit theorem. Probability theory is not simple, and neither is the central limit theorem.
Leaving out considerable detail, a statement of this indispensable theorem is as follows:
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6 Statistical Distributions

area = 0.023

area = 0.159

area = 0.500

area = probability

area = 0.841

area = 0.977

μ + 2σμ + σμμ − σμ − 2σ

Figure 1.2 Normal Distribution Probabilities (Area to the Left = Cumulative Probability =
1 − α) and Their Associated Critical Values (Percentiles/Quantities)

When a sample mean value represented by X̄ is estimated from n independent random
observations {x1, x2, . . . , xn} sampled from the same distribution with mean value μ and
variance σ 2

X , the distribution of

Z = √
n

[
X̄ − μ

σX

]

converges to a normal distribution with mean = 0 and variance = 1 as the sample size n
increases.

The most important feature of the central limit thereon is what is missing. No mention
is made of the properties of the sampled population. The extraordinary usefulness of this
theorem comes from the fact that it applies to many kinds of mean values from many
situations. Thus, for a sample size as few as 20 or 30 observations, a normal distribution is
frequently an accurate description of the distribution of a large variety of summary statistics.
Therefore, different kinds of statistical summaries can be evaluated with approximate normal
distribution probabilities for moderate sample sizes. In fact, data sampled from symmetric
distributions likely produce mean values with close to symmetric distributions and, therefore,
are often accurately approximated by a normal distribution for a sample sizes as small as 10.
Ratio summaries are similarly evaluated because the logarithm of a ratio frequently produces
values with an approximate symmetric distribution. Of note, when values are sampled from
a normal distribution, sums, and means of these values have exactly normal distributions for
any sample size.

To illustrate the central limit theorem, consider a sample of n = 10 independent and
randomly sampled values distributed between 0 and 1. One such a sample is

{0.593, 0.726, 0.370, 0.515, 0.378, 0.418, 0.011, 0.532, 0.432 and 0.094}
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The t-Distribution 7
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Figure 1.3 An Illustration of the Central Limit Theorem Consisting of 1000 Mean Values Each
Estimated from 10 Randomly Sampled Values between 0 and 1 (n = 10)

with mean value x̄ = 0.406. Thus, a distribution of 1000 such mean values each calculated
from 10 observations randomly sampled from the same distribution is accurately approx-
imated by a normal distribution with a mean value μ = 0.5 and variance σ 2

x̄ = σ 2
x /n =

(1�12)�n = 0.0083 (Figure 1.3, solid line).
The convergence described by the central limit theorem becomes slower and less accurate

as the population sampled becomes less symmetric. Transformations such as the square
root or logarithm or other specialized functions of observations produce values with an
approximate normal distribution (Chapter 6). These transformations typically make large
reductions in extreme values and relatively smaller reductions in small values tending to
create a more symmetric distribution. When the distribution of data is extremely asymmetric,
the mean value is not a useful summary, and alternatives such as the median value or
other statistical measures are more meaningful. Thus, when a mean value is a worthwhile
summary, even for modest sample sizes of 20 or 30 observations, it is likely to have at least
an approximate normal distribution.

The t-Distribution

A probability from a t-distribution describes the properties of a test statistic designed to
evaluate the sample mean value x̄ consisting of n independently sampled observations from
a normal distribution with mean μ. Thus, the expression

t statistic = T = x̄ − μ

Sx̄
= √

n

[
x̄ − μ

SX

]
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8 Statistical Distributions

Table 1.2 Description: Standard Normal and t-Distribution Critical Values for Five
Selected Probabilities (Degrees of Freedom = df = {2, 10, 20, 40, and 60})

Normal distribution t-Distributions

Probabilities (1 − α) z1−α df = 2 df = 10 df = 20 df = 40 df = 60

0.990 2.326 6.965 2.764 2.528 2.423 2.390
0.975 1.960 4.303 2.228 2.086 2.021 2.000
0.950 1.645 2.920 1.812 1.725 1.684 1.671
0.900 1.282 1.886 1.372 1.325 1.303 1.296
0.800 0.842 1.061 0.879 0.860 0.851 0.848

has a t-distribution (Table 1.2) with a mean value of 0.0. The evaluation of the sample
mean value x̄ is much like the Z-value based on the central limit theorem. The difference
is that, unlike the normal distribution test statistic Z where the variance is a known value,
the variance used in the calculation of the t statistic is estimated from the sampled data that
generated the mean value (in symbols, S2

X̄
= S2

X/n) (Chapter 27).
The t-distribution is defined by a single parameter called the degrees of freedom (denoted

df) determined by the number of observations used to estimate the mean value and its vari-
ance. Thus, a different t-distribution exists for every sample size. Figure 1.4 displays the

−4 −2 0 2 4

normal distribution
degrees of freedom = 20
degrees of freedom = 5
degrees of freedom = 2

Figure 1.4 Three Representative t-Distributions with Degrees of Freedom of 2, 5, and 20 and a
Standard Normal Distribution (μ = 0 and σ 2 = 1)
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The Chi-Square Probability Distribution 9

standard normal distribution and three t-distributions. Because this statistical distribution
accounts for the added variability due to an estimated variance, the cumulative proba-
bilities from the t-distribution are larger than the corresponding cumulative probabilities
from a standard normal distribution. For example, this increased variability, for degrees of
freedom = 30, causes the modest difference P(T � 2.0) = 0.027 and P(Z � 2.0) = 0.023.

The critical values from a standard normal distribution Z1 − α are approximately equal to
critical values from a t-distribution (denoted t1−α ,df) for degrees of freedom (df) greater than
30 or so. As the sample size increases, the difference decreases (Figure 1.4). In symbols,

Z1−α ≈ t1−α,d f for d f = degrees of freedom > 30.

Table 1.2 illustrates a few selected t-distribution cumulative probabilities. The mean of
the symmetric t-distribution is 0, and the variance is df�(df − 2) for df > 2. Thus, as the
degrees for freedom (sample size) increases, these two parameters more closely correspond
to the mean value of 0.0 and variance of 1.0 of the standard normal distribution.

Table 1.2 further indicates that differences between a t-distribution and a normal distribu-
tion are small and generally negligible for sample sizes greater than 30 or 40 observations.
For a sample size where the degrees of freedom are 60, then t0.95,60 = 1.671 and z0.95 =
1.645. Thus, for large sample sizes, ignoring the difference between a t-distribution and
normal distribution has negligible effects, as noted in Figure 1.4. From a practical point of
view, this similarity indicates that the difference between the estimated variance (S2

X ), and
the variance estimated (σ 2

X ) becomes unimportant unless the sample is small (n < 30).
For small sample sizes, the t-distribution provides an analysis of a mean value when the

data are sampled from a normal distribution. The central issue, however, for a small sample
size is bias. An error in measuring a single observation or a loss of a single observation, for
example, can have considerable influence when the sample size is small. If 10 observations
are collected, a single biased or missing value represents 10% of the data. When a student
described an experiment based on six observations to statistician R. A. Fisher, he is said
to have replied, “You do not have an experiment, you have an experience.” Thus, for small
sample sizes, the accuracy of the usually unsupported assumption that the data consist
of independent and randomly sampled unbiased observations from a normal distribution
becomes critically important. Furthermore, exact statistical analyses exist for small samples
sizes that do not depend on the properties of the population sampled (Chapters 8 and 15).

The Chi-Square Probability Distribution

Karl Pearson (circa 1900) introduced the chi-square probability distribution as a way to
evaluate a test statistic that combines estimates of variability from different sources into a
single statistical summary. His chi-square distribution is defined by the following theorem:

If Z1, Z2, . . . , Zm are m independent and normally distributed random variables each with
mean value = 0 and variance = 1, then the sum of squared z-values,

X2 = Z2
1 + Z2

2 + · · · + Z2
m,

has a chi-square distribution with m degrees of freedom.
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10 Statistical Distributions

Table 1.3 Description: A Few Selected Critical Values and Their Cumulative Probabilities
from Chi-Square Probability Distributions (df = {1, 2, 10, 30, 50, and 100})

Degrees of freedom (df)

Probabilities (1 − α) 1 2 10 30 50 100

0.990 6.635 9.210 23.209 50.892 76.154 135.807
0.975 5.024 7.378 20.483 46.979 71.420 129.561
0.950 3.841 5.991 18.307 43.773 67.505 124.342
0.900 2.706 4.605 15.987 40.256 63.167 118.498
0.800 1.642 3.219 13.442 36.250 58.164 111.667

Each chi-square distribution is a member of a family of probability distributions identified
by an associated degree of freedom (again denoted df). The degrees of freedom of a chi-
square distribution completely define its location and shape and, therefore, its properties.
The degrees of freedom associated with a specific chi-square distribution depend on the
number of independent z-values in the sum that makes up the chi-square statistic denoted
X2. For most chi-square statistics the values {Z2

1, Z2
2, . . . , Z2

m} are not independent (df <

m). This lack of independence is dealt with by adjusting the degrees of freedom. Thus,
the degrees of freedom are occasionally difficult to determine but are usually part of the
description of a specific statistical application or are computer generated with statistical
software. Table 1.3 contains a few chi-square critical values (denoted X2

1−α,d f ) and their
corresponding cumulative probabilities giving a sense of this probability distribution. For
example, the chi-square distribution 90th percentile (1 − α = 0.90) value X2

0.90,2 is 4.605
when the degrees of freedom are two (df = 2).

Thus, for the chi-square variable represented by X2, the associated cumulative probability
is P(X2 � 4.605) = 0.90. Figure 1.5 displays four representative chi-square distributions.

The mean value of a chi-square distribution equals the degrees of freedom (df), and the
variance is 2df. To evaluate a chi-square value directly, it is handy to know that a chi-square
distributed value less than its mean value (df) has a cumulative probability always greater
than 0.3 for all chi-square distributions or always P(X2 � df) > 0.3.

The essence of a chi-square statistic is that it combines a number of summary values
each with a standard normal distribution into a single measure of variability. For example,
consider four independent sample mean values x̄1, x̄2, x̄3, and x̄4 each estimated from four
samples consisting of nj normally distributed observations. In addition, the mean values
and the variances of each sampled source are the same, represented by μ and σ 2

X . A chi-
square comparison of these sample mean values addresses the statistical question: Are
the differences among the four sample mean values likely to have occurred by chance
alone? If the answer is yes, the test statistic has a chi-square distribution with four degrees
of freedom. If the answers is no, it is likely that a larger and less probable test statistic
X2 occurs (Chapter 13). Typically, a significance probability (p-value; to be discussed) is
useful in choosing between these two alternatives. The probability calculated from a test
statistic X2 with a chi-square probability distribution indicates the likelihood that the observed
variability among the mean values occurred by chance alone. In other words, the chi-square
distribution summarizes the observed variation relative to a known and fixed population
variance (Chapter 13). Like many test statistics, it is a comparison of data to theoretical
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