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1

Fractional framework

Recently, great attention has been focused on the study of fractional and nonlocal
operators of elliptic type, both for pure mathematical research and in view of
concrete real-world applications. This type of operator arises in a quite natural
way in many different contexts, such as, among others, the thin obstacle problem,
optimization, finance, phase transitions, stratified materials, anomalous diffusion,
crystal dislocation, soft thin films, semipermeable membranes, flame propagation,
conservation laws, ultrarelativistic limits of quantum mechanics, quasi-geostrophic
flows, multiple scattering, minimal surfaces, materials science, water waves,
chemical reactions of liquids, population dynamics, geophysical fluid dynamics, and
mathematical finance (American options). The fractional Laplacian also provides a
simple model to describe certain jump Lévy processes in probability theory. In all
these cases, the nonlocal effect is modeled by the singularity at infinity. For more
details and applications, see [13, 35, 47, 52, 55, 75, 140, 216, 217, 218, 219] and the
references therein.

From a physical point of view, nonlocal operators play a crucial rule in describing
several phenomena. As a general reference in this topic, we cite the recent paper of
Vázquez [217]. In that paper, the author describes two models of flow in porous
media, including nonlocal (long-range) diffusion effects, providing a long list of
references related to physical phenomena and nonlocal operators. The first model
is based on Darcy’s law, and the pressure is related to the density by an inverse
fractional Laplacian operator. The second model is more in the spirit of fractional
Laplacian flows but nonlinear: contrary to the usual porous medium flows, it has
infinite speed of propagation.

Moreover, the fractional power of the Laplace operator has been studied in
relation to the obstacle problem that appears in many contexts, such as in the study of
anomalous diffusion, in the so-called quasi-geostrophic flow problem, and in pricing
of American options governed by assets evolving according to jump processes (see,
e.g., the papers [54, 188, 189]).
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4 Fractional framework

For the sake of completeness, we mention that fractional nonlocal problems have
been considered recently under certain Neumann boundary conditions using different
methods and approaches (see, among others, the papers [78, 79, 80, 160, 209]).
All these different Neumann problems for nonlocal operators recover the classical
Neumann problem as a limit case, and most of them have clear probabilistic
interpretations as well. In this setting, in [85], the authors propose an intriguing
approach to studying Neumann problems with a variational structure.

In this chapter we sketch the basic facts on fractional Sobolev spaces and
fractional nonlocal operators. Our treatment is mostly self-contained, and we tacitly
assume that the reader has some knowledge of the basic objects discussed here. More
precisely, the main purpose of this section is to present some results on fractional
Sobolev spaces and nonlocal operators in the form in which they will be exploited
later on. Since this is an introductory chapter to convey the framework we work in,
the rigorous proofs will be kept to a minimum. Some extra reading of the references
may be necessary to truly learn the material.

Here we will consider a nonlocal fractional framework, providing models and
theorems related to nonlocal phenomena. The results of this chapter are based on the
papers [83, 147, 148, 198, 199, 200].

1.1 Fourier transform of tempered distributions

In this section we just recall briefly the notion of Fourier transform of a tempered
distribution. First of all, we consider the Schwartz space S of rapidly decaying
C∞(Rn) functions whose topology is generated by the seminorms {p j } j∈N defined as

p j (ϕ) := sup
x∈Rn

(1+|x |) j
∑
|α|≤ j

|Dαϕ(x)|,

where ϕ ∈S (Rn). More precisely, S contains the smooth functions ϕ satisfying

sup
x∈Rn
|xαDβϕ(x)|<+∞,

for all multi-indices α and β ∈Nn
0.

The natural locally convex topology on S can be characterized by the following
notion of convergence:

the sequence {ϕ j } j∈N converges to 0 in S if and only if

lim
j→+∞ xαDβϕ j (x)= 0, for all α and β ∈Nn

0 .

We denote by

Fϕ(ξ ) := 1

(2π )n/2

∫
Rn

e−iξ ·xϕ(x)dx (1.1)

the Fourier transform of a function ϕ ∈S . Note that, for every ϕ ∈S , one has that
Fϕ ∈S .
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1.2 Fractional Sobolev spaces 5

It may be readily verified that the Fourier transform (1.1) and the inverse Fourier
transform, given by

F−1ϕ(x) := 1

(2π )n/2

∫
Rn

eix ·ξ ·ϕ(ξ )dξ , (1.2)

are both continuous on S (Rn) into S (Rn). Moreover, since

F−1Fϕ =FF−1ϕ = ϕ,

each of them is, in fact, an isomorphism and a homeomorphism of S (Rn) onto
S (Rn).

Now let S ′ be the topological dual of S . As usual, a tempered distribution is an
element of S ′. If T ∈S ′, the Fourier transform of T can be defined as the tempered
distribution given by

〈F T ,ϕ〉 := 〈T ,Fϕ〉,
for every ϕ ∈S , where 〈·, ·〉 denotes the usual duality bracket between S and its
dual S ′.

By using definition (1.1), one has

u ∈ L2(Rn) if and only if Fu ∈ L2(Rn) (1.3)

and
‖u‖L2(Rn ) = ‖Fu‖L2(Rn ), (1.4)

for every u ∈ L2(Rn). Formula (1.4) is the so-called Parseval–Plancherel formula,
which will be crucial in what follows for proving the equivalence between the
fractional spaces H s(Rn) and Ĥ s(Rn) (see Corollary 1.15).

For a detailed introduction to the classical theory of distribution and Fourier
transform, we refer to the monograph [187] and the recent book [69] for several
applications to elliptic problems of linear and nonlinear functional analysis.

1.2 Fractional Sobolev spaces

Let � be a possibly nonsmooth, open set of the Euclidean space Rn and p ∈
[1,+∞). For any s > 0, we would define the fractional Sobolev space W s,p(�). In
the literature, fractional Sobolev-type spaces are also called Aronszajn, Gagliardo,
or Slobodeckij spaces, by the names of the ones who introduced them, almost
simultaneously (see [15, 110, 207]).

If s ≥ 1 is a positive integer, we denote by W s,p(�) the classical Sobolev space
equipped with the standard norm

‖u‖W s,p (�) :=
∑

0≤|α|≤s

‖Dαu‖L p(�),

for every u ∈ W s,p(�), where here and in what follows ‖ · ‖L p(�) denotes the usual
norm in L p(�), and Dα stands for the α-distributional derivative. This section is
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6 Fractional framework

devoted to the definition of fractional Sobolev spaces; that is, here we are interested
in the case where s /∈N.

For a fixed s ∈ (0,1), we recall that the Sobolev space W s,p(�) is defined as
follows:

W s,p(�) :=
{

u ∈ L p(�) :
|u(x)− u(y)|
|x − y|n/p+s

∈ L p(�×�)

}
.

It is endowed with the natural norm

‖u‖W s,p (�) :=
(∫

�

|u(x)|p dx +
∫
�×�
|u(x)− u(y)|p
|x − y|n+sp

dx dy

)1/p

, (1.5)

where the term

[u]W s,p(�) :=
(∫

�×�
|u(x)− u(y)|p
|x − y|n+sp

dx dy

)1/p

(1.6)

is the Gagliardo seminorm of u.
When s > 1 and s /∈N, we can write s =m+ σ , where m ∈N and σ ∈ (0,1). We

can define W s,p(�) as follows:

W s,p(�) := {u ∈W m,p(�) : Dαu ∈W σ ,p(�) for any α s. t. |α| =m
}
.

In this case, W s,p(�) is endowed with the norm

‖u‖W s,p (�) :=
⎛⎝‖u‖p

W m,p(�)+
∑
|α|=m

‖Dαu‖p
Wσ ,p(�)

⎞⎠1/p

,

for every u ∈W s,p(�). All in all, the space W s,p(�) is well defined and is a Banach
space for every s > 0.

As in the classical case (i.e., s ∈ N), any function in the fractional Sobolev space
W s,p(Rn) can be approximated by a sequence of smooth functions with compact
support. Indeed, for any s > 0,

C∞0 (Rn)
‖·‖W s,p (Rn ) =W s,p(Rn);

that is, the space C∞0 (Rn) is dense in W s,p(Rn).
In general, if�⊂Rn , the space C∞0 (�) is not dense in W s,p(�). Hence, we denote

by W s,p
0 (�) the closure of C∞0 (�) with respect to the norm ‖ · ‖W s,p (�); that is,

W s,p
0 (�) := C∞0 (�)

‖·‖W s,p (�) .

With this definition, we can also construct W s,p(�) when s < 0. Indeed, for s < 0
and p ∈ (1,+∞), we can define

W s,p(�) := (W−s,q
0 (�)

)′
;

that is, W s,p(�) is the dual space of W−s,q
0 (�), where 1/p+ 1/q = 1.
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1.2 Fractional Sobolev spaces 7

1.2.1 Embedding properties

This subsection is devoted to the embeddings of fractional Sobolev spaces into
Lebesgue spaces. We point out that Sobolev inequalities and continuous (compact)
embeddings of the spaces W s,p into the classical Lebesgue spaces Lq are
exhaustively treated in [83, sections 6 and 7] (see also [3]). Here we recall briefly
some basic facts.

Proposition 1.1 Let p ∈ [1,+∞) and let� be an open set in Rn . Then the following
assertions hold true:

(a) If 0< s ≤ s ′ < 1, then the embedding

W s′,p(�) ↪→W s,p(�)

is continuous. Hence, there exists a constant C1(n,s, p)≥ 1 such that

‖u‖W s,p(�) ≤ C1(n,s, p)‖u‖W s′ ,p(�),

for any u ∈W s′,p(�).
(b) If 0 < s < 1 and � is of class C0,1 (i.e., with Lipschitz boundary) and with

bounded boundary ∂�, then the embedding

W 1,p(�) ↪→W s,p(�)

is continuous. Hence, there exists a constant C2(n,s, p)≥ 1 such that

‖u‖W s,p (�) ≤ C2(n,s, p)‖u‖W 1,p(�),

for any u ∈W 1,p(�).
(c) If s ′ ≥ s > 1 and � is of class C0,1, then the embedding

W s′,p(�) ↪→W s,p(�)

is continuous.

Proof See propositions 2.1 and 2.2 and corollary 2.3 in [83].

Now we recall some basic properties about continuous (compact) embeddings of
the fractional Sobolev spaces into Lebesgue spaces. In what follows, we need the
following definition:

Definition 1.2 For any s ∈ (0,1) and any p ∈ [1,+∞), an open set � ⊂ Rn is an
extension domain for W s,p if there exists a positive constant C := C(n, p,s,�) such
that for every function u ∈W s,p(�), there exists Eu ∈W s,p(Rn) such that Eu(x)= u(x)
for any x ∈� and

‖Eu‖W s,p(Rn ) ≤ C‖u‖W s,p(�).
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8 Fractional framework

Note that any open set of class C0,1 with bounded boundary is an extension
domain for W s,p(Rn); see [83, theorem 5.4] for a direct proof.

For the sake of completeness, we also recall an interesting result, proved in [83,
lemma 5.1], about the construction of the extension Eu to the whole of Rn of a
function u defined on an open set �⊂Rn .

Lemma 1.3 Let � be an open set in Rn, and let u ∈ W s,p(�) with s ∈ (0,1) and
p ∈ [1,+∞). If there exists a compact subset K ⊂� such that u ≡ 0 in�\K , then
the extension function Eu, defined as

Eu(x) :=
{

u(x) if x ∈�
0 if x ∈Rn \�,

belongs to W s,p(Rn), and

‖Eu‖W s,p(Rn ) ≤ C‖u‖W s,p (�),

where C is a suitable positive constant depending on n, p,s,K , and �.

Now we are ready to discuss the embedding properties of W s,p. For this purpose,
we distinguish three different cases, that is, sp < n, sp = n, and sp > n. We refer to
[83, sections 6–8] for a proof of these results.

Case 1: sp < n.

Theorem 1.4 Let s ∈ (0,1) and p ∈ [1,+∞) such that sp < n. Then there exists a
positive constant C := C(n, p,s) such that, for any u ∈W s,p(Rn),

‖u‖p

L p∗s (Rn )
≤ C

∫
Rn×Rn

|u(x)− u(y)|p
|x − y|n+ps

dx dy,

where the constant
p∗s := pn

n− sp

is the so-called fractional critical exponent. Consequently, the space W s,p(Rn) is
continuously embedded in Lq (Rn) for any q ∈ [p, p∗s ]. Moreover, the embedding
W s,p(Rn) ↪→ Lq

loc(Rn) is compact for every q ∈ [p, p∗s ).

In an extension domain �, the following embedding result holds:

Theorem 1.5 Let s ∈ (0,1) and p ∈ [1,+∞) such that sp < n. Let � ⊂ Rn be an
extension domain for W s,p. Then there exists a positive constant C := C(n, p,s,�)
such that, for any u ∈W s,p(�),

‖u‖Lq (�) ≤ C‖u‖W s,p(�),

for any q ∈ [p, p∗s ]; that is, the space W s,p(�) is continuously embedded in Lq (�) for
any q ∈ [p, p∗s ]. If, in addition, � is bounded, then the space W s,p(�) is compactly
embedded in Lq (�) for any q ∈ [1, p∗s ).
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1.2 Fractional Sobolev spaces 9

Case 2: sp = n.

Theorem 1.6 Let s ∈ (0,1) and p ∈ [1,+∞) such that sp = n. Then there exists a
positive constant C := C(n, p,s) such that, for any u ∈W s,p(Rn),

‖u‖Lq (Rn ) ≤ C‖u‖W s,p(Rn ),

for any q ∈ [p,+∞); that is, the space W s,p(Rn) is continuously embedded in Lq (Rn)
for any q ∈ [p,+∞).

For an extension domain �, we have the following embedding result:

Theorem 1.7 Let s ∈ (0,1) and p ∈ [1,+∞) such that sp = n. Let � ⊂ Rn be an
extension domain for W s,p. Then there exists a positive constant C := C(n, p,s,�)
such that, for any u ∈W s,p(�),

‖u‖Lq (�) ≤ C‖u‖W s,p(�),

for any q ∈ [p,+∞); that is, the space W s,p(�) is continuously embedded in Lq (Rn)
for any q ∈ [p,+∞). If, in addition, � is bounded, then the space W s,p(�) is
continuously embedded in Lq (�) for any q ∈ [1,+∞).

Case 3: sp > n. Here C0,α(�) denotes the space of Hölder continuous functions,
endowed with the standard norm

‖u‖C0,α (�) := ‖u‖L∞(�)+ sup
x ,y∈�
x �=y

|u(x)− u(y)|
|x − y|α .

Theorem 1.8 Let s ∈ (0,1) and p ∈ [1,+∞) such that sp > n. Let � be a C0,1

domain of Rn. Then there exists a positive constant C := C(n, p,s,�) such that, for
any u ∈W s,p(�),

‖u‖C0,α (�) ≤ C‖u‖W s,p(�),

with α := (sp − n)/p; that is, the space W s,p(�) is continuously embedded in
C0,α(�).

The preceding regularity property remains valid for functions in W s,p when
sp > n and � is an extension domain for W s,p with no external cusps (see [83,
theorem 8.2]). As a consequence of Theorem 1.8, we have the following result:

Corollary 1.9 Let s ∈ (0,1) and p ∈ [1,+∞) such that sp > n. Let � be a C0,1

bounded domain of Rn . Then the embedding

W s,p(�) ↪→ C0,β(�)

is compact for every β < α, with α := (sp− n)/p.
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10 Fractional framework

Proof Let {u j } j∈N be a bounded sequence in W s,p(�). Theorem 1.8 ensures that
{u j } j∈N is bounded in C0,α(�). Hence, there exists C > 0 such that

‖u j‖L∞(�)+ sup
x ,y∈�
x �=y

|u j (x)− u j (y)|
|x − y|α ≤ C ∀ j ∈N. (1.7)

By using (1.7), the Ascoli–Arzelà theorem gives that

u j → u∞ uniformly in � (1.8)

as j→+∞, for some u∞ ∈ C(�). Moreover, (1.7) and (1.8) give

|u∞(x)− u∞(y)| = lim
j→+∞|u j (x)− u j (y)| ≤ C |x − y|α , (1.9)

for any x , y ∈�. Thus, the function u∞ belongs to C0,α(�).
Let us prove that u j → u∞ in C0,β(�) as j→+∞, for every β < α. Taking into

account (1.8), we have to show that

sup
x ,y∈�
x �=y

|(u j − u∞)(x)− (u j − u∞)(y)|
|x − y|β → 0 (1.10)

as j→+∞. Since

‖u j − u∞‖L∞(�)→ 0 as j→+∞,

for every ε > 0, there exists jε ∈N such that

‖u j − u∞‖L∞(�) ≤ ε
2

( ε
2C

)β/(α−β) ∀ j ≥ jε. (1.11)

Now inequalities (1.7) and (1.9) give

|(u j − u∞)(x)− (u j − u∞)(y)| ≤ 2C |x − y|α−β |x − y|β ∀ x , y ∈�. (1.12)

If 2C |x − y|α−β < ε, inequality (1.12) ensures that

|(u j − u∞)(x)− (u j − u∞)(y)| ≤ ε|x − y|β ∀ x , y ∈�. (1.13)

Here we use the fact that β < α.
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