Author Index

Aharonov, Yakir, 232, 273, 356, 359, 360, 393
Allcock, D. T., 406
Ambler, E., 153
Anderson, H. L., 145
Anderson, M. H., 135
Andrade, E. N. da Costa, 7
Aspect, Alain, 400, 401

Bacciagaluppi, G., 30
Bailey, V. A., 268
Bakshi, P. M., 314
Ballance, C. J., 406
Banks, T., 243
Bassi, A., 88, 239
Bayh, W., 360
Bell, John S., 398–401
Benatti, F., 242, 243
Bennett, C. H., 388
Berry, Michael V., xvii, 227–232, 246, 360
Beyer, R. T., 90
Bose, Satyendra Nath, 133, 135, 140
Bassi, A., 88, 239
Brassard, G., 388
Breit, G., 143, 266, 268, 303
Brillouin, Leon, 81, 198
Broglie, Louis de, 13–16, 24
Brune, M., 232
Brunner, N., 398
Burgoyne, N., 133

Cabinet, N., 323
Cassen, B., 143
Cavalcanti, D., 398
Caves, C. M., 101
Chadwick, James, 10, 30
Chambers, R. G., 360
Chinowsky, W., 152
Cho, M. D., 242, 243
Christensen, J. H., 154
Clauser, J. F., 401
Commins, E. D., 401
Compton, Arthur H., 5, 6, 13
Condon, E. U., 143, 267
Cornell, E. A., 135
Creutz, M., 347
Cronin, J. W., 154

Dalibard, J., 400
Darwin, C. G., 93, 105
Davison, Clinton, 14
DeGrand, T., 347
DeTar, C., 347
Deutsch, D., 100
Author Index

DeWitt, B. S., 87, 100, 314
DeWitt, C., 100
Dicks, D., 405
Distler, J., 28
Dyson, F. J., 311, 313, 314
Eckart, Carl, xviii, 28, 105, 128–130, 132, 181, 294
Edmonds, A. R., 164
Ehrenfest, Paul, 26, 116
Einstein, Albert, 5, 8–13, 17, 18, 24, 30, 135, 140, 223, 384, 392–394
Eisenschitz, R., 208
Elsasser, Walter, 14
Endo, J., 360
Everett, Hugh, 97
Ezawa, H., 94
Faddeev, L. D., 305
Farhi, E., 100, 101
Fiejnberg, E., 143, 255
Fermi, Enrico, xix, 133, 141, 145, 217, 323, 355
Feynman, Richard P., 195, 340, 344, 345
Fierz, M., 133
Fitch, V. L., 154
Florenanini, R., 242, 243
Fock, V., 224
Fowler, H. A., 360
Fraunhofer, Joseph von, 6
Friedman, J. L., 153
Froissart, M., 299
Fuchs, C. A., 93
Fujiwara, H., 360
Fukuhara, A., 360
Gamow, George, 4, 267
Garwin, R., 153
Geiger, Hans, 7
Gell-Mann, M., 94, 95, 145, 146
Gerlach, Walter, 90, 91, 97, 116, 122
Germann, Lester, 14
Ghirardi, G. C., 88, 239
Gibbs, J. Willard, 5
Gisin, N., 396
Goeppep-Mayer, M., 138
Goldstone, J., 100, 101
Gottesman, D., 406
Goudsmit, Samuel, 104
Graham, N., 100
Granger, P., 400
Griffiths, R. B., 94
Grohmann, K., 360
Guidoni, L., 406
Gurney, R. W., 267
Guttmann, S., 100, 101
Hafstad, L. R., 143
Halzen, F., 299
Hamisch, H., 360
Haroche, S., 232
Hartle, J. B., 94, 95, 100, 101
Hartree, D. R., 134
Harty, T. P., 406
Hayward, R. W., 153
Hellmann, F., 195
Herlglotz, A., 319
Heydenberg, N., 143
Hibbs, A. R., 340, 345
Holt, R. A., 401
Hopps, D. D., 153
Horne, M. A., 401
Hoyt, F. C., 28
Hu, B. L., 94
Hudson, R. P., 153
Janacek, H. A., 406
Jeans, James, 2, 3
Jensen, J. H. D., 138
Joos, E., 91
Jordan, Pascual, 20, 23, 105
Keldysh, L. V., 314
Kent, A., 98
Kirchhoff, Gustav Robert, 1, 4
Kleppner, D., 232
Klibansky, R., 86
Kobayashi, S., 94
Kocher, C. A., 401
Kossakowski, A., 242
Kramers, Hendrik A., 198
Kraus, K., 242
Kuhn, W., 18, 19
Landau, Lev D., xvii, 164, 165, 353
Larmor, J., 17
Lederman, L., 153
Lee, Tsung-Dao, 153
Leggett, A. J., 91
Levinson, Norman, xvii, 270
Lewis, G. N., 6
Lifshitz, E. M., 164, 165
Lindblad, G., 242
Linke, N. M., 406
Lippmann, B., 249, 252, 283, 286, 303, 308, 315, 321–323
London, Fritz, 208
Lononaco, S. J., Jr., 406
Lord, J. J., 145
Lorentz, Hendrik Antoon, 5, 116, 178, 309, 311, 312, 344
Low, Francis, 315–318
Lucas, D. M., 406
Lüders, G., 133, 154
Magnus, W., 209, 272
Mahanthappa, K. T., 314
Maksymowicz, A., 323
Marsden, Ernest, 7
Martin, R., 145
Marton, L., 360
Maskawa, T., 338
Matsuda, T., 360
Matthews, M. R., 135
Mermin, N. David, 93, 402
Messiah, Albert, 224
Müller, Robert A., 5
Möllenstedt, G., 360
Moseley, H. G. J., 10
Murayama, Y., 94
Nagle, D. E., 145
Nakajima, H., 338
Nakamura, K., xxii
Nakano, T., 145
Ne’eman, Y., 146
Neumann, John von, 73, 86, 90, 243, 261, 397
Newell, D. B., 3
Newton, R. G., 255
Nishijima, K., 145
Noether, Emmy, 328
Nomura, S., 94
Nye, M. J., 30
Oberhettinger, F., 209, 272
Olson, P. T., 3
Omnès, R., 94
Oppenheimer, J. Robert, 191, 192, 194, 196, 197
Orear, J., 145
Osakabe, N., 360
Ozawa, M., 28
Paban, S., 28
Pauli, Wolfgang, 21, 104, 105, 115, 133, 135, 136, 140, 141, 153, 154, 398
Pearle, P., 239
Perlmutter, S., 376
Peskin, M. H., 243
Phua, K. K., 94
Pironio, S., 398
Planck, Max, xviii, xxii, 3–5, 8, 9, 12, 140
Podolsky, Boris, 392–394
Polchinski, J., 396
Preskill, J., 389, 402, 406
Rabi, I. I., xix, 232, 233
Raimond, J.-M., 232
Ramsauer, C., 268
Ramsey, Norman, xix, 232–234
Rayleigh, Lord, 2–4, 255
Riess, A. G., 376
Rimini, A., 88, 239
Ritz, Walther, 8
Rogers, G., 400
Romano, R., 243
Rose, M. E., 164
Rosen, Nathan, 392–394
Rutherford, Ernest, 7, 8, 247, 259, 278
Ryan, M. P., 94

Sagita, Y., 360
Scarani, V., 398
Schack, R., 93, 101
Schiff, Leonard I., xvii
Schmidt, B., 376

Schwartz, Laurent, 64
Schwinger, J., 249, 252, 283, 286, 303, 308, 314, 315, 321–323
Shapere, A., 232
Shimony, A., 401
Shinagawa, K., 360
Shohat, J. A., 319
Shor, P. W., 389, 406
Simpson, J. A., 360
Slater, J. C., 135
Sommerfeld, Arnold, 11, 14, 21, 203, 205

Stacey, D. N., 406
Stark, J., 179, 180, 182, 183, 188
Steinberger, J., 152
Steiner, R. L., 3
Stern, Otto, 90, 91, 97, 116, 122
Stinespring, W. F., 242
Streater, R. F., 133
Struppa, D. C., 239
Strutt, John William, see Rayleigh, Lord

Sudarshan, E. C. G., 242
Suddeth, J. A., 360
Suzuki, R., 360
Tamarkin, J. D., 319
Telegdi, V. L., 153
Thomas, W., 18
Thomson, Joseph John, 4, 6
Tollakson, J. M., 239
Tomomura, A., 360
Townsend, J. S., 268
Tsao, C. H., 145
Tung, Wu-Ki, 164
Turlay, R., 154
Tuve, M. A., 143
Uhlenbeck, George, 104
Umezaki, H., 360
Valentini, A., 30
Vega, H. J. de, 314
Vishveshwars, C. V., 94

Waals, Johannes Diderik van der, xix, 208
Waedern, B. L. van der, 30
Wallace, Alfred Russel, 93
Watson, G. N., xix, 200, 323
Watson, K., 323
Weaver, A. B., 145
Webber, J., 272
Weber, T., 88, 239
Wehner, S., 398
Weinberg, Steven, xviii, 76, 107, 154, 207, 274, 305, 314, 318, 338, 376
Weinrich, M., 153
Weisskopf, Victor, 105
Wentzel, Gregor, 198
Wermer, J., 209
Wheeler, John A., 86, 89, 100, 398
Wieman, C. E., 135
Wien, Wilhelm, 12
Wightman, A. S., 133
Wigner, Eugene P., xvii, 76, 105, 128–130, 132, 181, 266, 268, 269, 294, 303
Author Index

<table>
<thead>
<tr>
<th>Author</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilczek, F.</td>
<td>227, 232</td>
</tr>
<tr>
<td>Williams, E. R.</td>
<td>3</td>
</tr>
<tr>
<td>Wohlleben, D.</td>
<td>360</td>
</tr>
<tr>
<td>Wolf, E.</td>
<td>273</td>
</tr>
<tr>
<td>Wollaston, William Hyde</td>
<td>6</td>
</tr>
<tr>
<td>Wooters, W. R.</td>
<td>405</td>
</tr>
<tr>
<td>Wu, C. S.</td>
<td>153</td>
</tr>
<tr>
<td>Yamaguchi, Y.</td>
<td>94</td>
</tr>
<tr>
<td>Yang, Chen-Ning</td>
<td>153</td>
</tr>
<tr>
<td>Yukawa, Hideki</td>
<td>259, 299</td>
</tr>
<tr>
<td>Zee, A.</td>
<td>227</td>
</tr>
<tr>
<td>Zeeman, Pieter</td>
<td>130, 174, 177–180</td>
</tr>
<tr>
<td>Zeh, H. D.</td>
<td>91</td>
</tr>
<tr>
<td>Zumino, B.</td>
<td>133</td>
</tr>
<tr>
<td>Zurek, W. H.</td>
<td>86, 88, 90, 94, 398, 405</td>
</tr>
</tbody>
</table>
Subject Index

absorption of light, 11–12, 222–224
actinides, 138
action principle, 326
addition theorem, see Legendre polynomials
adiabatic approximation, 224–232
adjoints of operators, 65–66
Aharonov–Bohm effect, 356–360
alkali earths, 138
alkali metals, 46, 104, 137, 175
alpha particles, 7–8, 138, 267–268, 300
ammonia, 205
addition, 117–118, 133
multiplets, 112–115
of rigid rotator, 160
also see Clebsch–Gordan coefficients, commutators, spin, Wigner–Eckart theorem
annihilation operators, see creation and annihilation operators
anomalous Zeeman effect, see Zeeman effect
atomic number, 10
atomic spectra, 6
also see fine structure, hydrogen atom, hyperfine splitting, Lamb shift, radiative transitions, Paschen–Back effect, Stark effect, Zeeman effect
atomic weight, 10
Avogadro’s number, 4
band structure, 82, 141
barrier penetration, 205–207, 264–268, 309
baryon number, 145
basis vectors, 58
BB84 protocol, 388–390
Bell inequalities, 398–400
Berry phase, 227, 360
Bessel functions, 200
also see spherical Bessel and Neumann functions
beta decay, 308–309
black-body radiation, 1–5
also see Planck distribution, Rayleigh–Jeans distribution
Bloch waves, 81
Bohm paradox, 393–394
Bohr atomic theory, 8–11, 45
Bohr radius a, 45
Boltzmann’s constant k_B, 3–4, 140
boost generator K, 85
Born approximation, 258–260, 273, 321

412

© in this web service Cambridge University Press
www.cambridge.org
also see distorted wave Born approximation
Born–Oppenheimer approximation, 191–197
Born rule, 29, 60, 87, 95–96, 102
Bose–Einstein condensation, 135
Bose–Einstein statistics, 140
bosons and fermions, 133–141
also see Bose–Einstein condensation, Bose–Einstein statistics, Fermi–Dirac statistics, magic numbers, Pauli exclusion principle, periodic table
bound states
limits on binding energy, 307
shallow states, 315–320
also see atomic spectra, Levinson’s theorem, Schrödinger equation
box normalization, 288
bra–ket notation, xviii, 60, 65
branching ratios, 302–303
Breit–Wigner formula, 266, 303
Brillouin zones, 81
broken symmetry, 205–207
canonical commutation rules, 332–335
canonical conjugate variables, 330–331
central charges, 86
centrifugal potential, 39
charge and current densities, 363
charge-conjugation invariance, 153–154
charge symmetry, 142
chemical potential, 140
chemistry, see molecules
chirality, 207
Choi theorem, see complete positivity
classical limit of path integral, 343–344
classical states, 90
closure approximation, 187
coherent states, 379–380
collapse of the state vector, 87
commutators, 29
of angular momentum operators, 34, 108–111
of creation and annihilation operators, 373, 375
of electromagnetic potential components, 365–368
of Galilean group generators, 85–86
of general symmetry generators, 77–78
of momentum and position operators, 20–21, 23, 27, 78–79
of raising and lowering operators, 50
also see canonical commutation rules, Dirac brackets
compact groups, 157
complete positivity, 242–243
completely continuous operators, 304
completeness, 58, 67
Compton scattering, 5–6
conservation laws, see Noether’s theorem, symmetry principles
consistent histories interpretation, see decoherent histories interpretation
constrained Hamiltonian systems, 335–340
continuous symmetries, 76–77
continuum normalization, 61–64
cooling of hot gases, 46
Copenhagen interpretation, 86–88
correlation function, 221
correspondence principle, 9
Coulomb gauge, 365
Coulomb potential, 8, 43, 259–260, 369
also see Coulomb scattering, hydrogen atoms
CPT symmetry, 84, 154
creation and annihilation operators, 373, 375
cross section
classical, 277–278
differential cross section defined, 254
for diffraction scattering, 298–299
general formula, 289–290
high energy, 298–299
low energy, 262–264
resonant, 266, 303
also see Coulomb scattering,
one-dimensional wave functions
expansions
crystals, 80–82, 141
cyanogen, 167
cyclotron frequency, 354
D lines of sodium, 104, 174, 177–178
dark energy, see zero point energy
Davisson–Germer experiment, 14
de Broglie waves, 13
de Haas–van Alphen effect, 356
decay rates, 289–290
also see radiative transitions,
resonances
decoherence, 88, 91–92, 206–207
decoherent-histories approach, 94–96
degeneracy
in adiabatic approximation, 227
in harmonic oscillator, 51–52, 149
in hydrogen atom, 46, 137–138
in perturbation theory, 170–174, 185–187
of Landau energy levels, 355
delta functions, 62–64, 216–217, 287
Δ particles, 144–145, 147
density matrix, 72–73, 86–88,
237–239, 394
positivity, 241–242
detailed balance, 321
deuteron, 48–49, 142, 152, 319
diagonalization, 67
diffraction peak, 258
dimensionality of vector spaces, 58
Dirac brackets, 338–339, 367–368
Dirac equation, xviii, 105, 153–154, 175
distorted-wave Born approximation,
308–309, 321–323
dyads, 71–72
dynamical phase, 225–226
Dyson series, 311
effective Hamiltonians, 197
effective range expansion, 264, 319
Ehrenfest’s theorem, 26, 116
eigenstates, eigenvectors, eigenvalues,
27, 66
eikonal approximation, 273–281,
356–359
Einstein A and B coefficients, 11–13
Einstein–Podolsky–Rosen paradox,
392–393
electromagnetic vector and scalar
potentials, 348, 356, 363–368
electron
charge, xxii, 4
discovery, 4
mass, 4
spin, 104–105
also see atomic spectra, Bloch
waves, Compton scattering,
Davisson–Germer experiment,
hydrogen atoms, gyromagnetic
ratio, Landau energy levels,
magnetic moment, photoelectric
effect
energy, see atomic spectra, bound
states, Hamiltonian, perturbation
theory
entanglement, 392–406
entropy, 397
experimental tests, 403–404
faster-than-light communication?,
394–396
in quantum computing, 402–403
paradoxes, 392–397
also see Bell inequalities
ε tensor, xxii, 33, 36, 109–110, 160
entropy, see entanglement entropy,
von Neumann entropy
equipartition, 3, 5
Euler–Lagrange equations, 361–362
exclusion principle, see Pauli exclusion principle
expectation values, 26, 68–69
factorizable solutions, 38
factorization
 of evolution kernels, 395
 of S-matrix elements, 311
Faddeev equation, 305
faraday, 4
Fermi surface, 141, 355
Fermi–Dirac statistics, 141
fermions, see bosons and fermions
Fermi’s golden rule, 217
field theory, see Euler–Lagrange equations, Maxwell equations, quantum electrodynamics
fine structure, 105, 122, 175
fine structure constant, 300
first and second class constraints, 337
Fock space, 376
Froissart bound, 299
Galilean invariance, 84–85
gamma function, 272
gauge invariance, 351–353
Gaussian integrals, 344
generators of symmetries, 77
 also see angular momentum, boost generator, commutators of symmetry generators,
Hamiltonian, momentum
grand canonical ensemble, 140
gravitons, 379
Green’s function, 252, 286
group velocity, 13–14
groups of symmetry transformations, 76
gyromagnetic ratio, 175, 387
halogens, 137–138
Hamiltonian, 16, 21, 24–25
derived from Lagrangian, 329–332
derived from time translation symmetry, 82, 330, 334
effective Hamiltonians, 197
for central potential, 32
for charged particle in electromagnetic field, 349–350
for electromagnetic field, 368–370
for harmonic oscillator, 50
for rigid rotator, 159–161
for two-body problem, 47
harmonic oscillator, 49–54, 139, 203, 354
Hartree approximation, 134
Heisenberg picture, 83, 247, 332
Heisenberg uncertainty principle, 28, 69–70
helicity, 378
helium nuclei, see alpha particles
Hellmann–Feynman theorem, 195–196
Herglotz theorem, 319
Hermite polynomials, 51
Hermitian matrices and operators, 20, 21, 25, 27, 35, 64, 77
hidden variables, 88, 398–402
Hilbert space, 55–60
hydrogen atom, 8–10, 21, 43–47, 122–123, 151, 154–158, 204–205
hydrogen molecule, see parahydrogen, orthohydrogen
hyperccharge, 147
hyperfine splitting, 123–124, 175
hyperons, 145–146
identical particles, see bosons and fermions
impact parameter, 278
“in” states, 247, 282–285, 309
independent state vectors, 57–58
induced emission, see stimulated emission
infrared divergences, 187
“in–in” formalism, 314
instrumentalist interpretations, 92
insulators, 141
interaction picture, 310, 370–375
internal symmetries, see charge symmetry, isospin invariance, strangeness, SU(3)

Subject Index 415
Subject Index

interpretations of quantum mechanics, 102
also see Copenhagen interpretation, decoherent histories interpretation, instrumentalist interpretations, many-worlds interpretation, realist interpretations isospin invariance, 143–145
Jacobi identity, 335
K mesons, 145–146, 153, 387
Kraus form, 242
Kuhn–Thomas sum rule, 18–19
Kummer function, 272
Lagrangians, 326–327 and symmetry principles, 327–329 density, 362 for charged particle in electromagnetic field, 348 for electromagnetic field, 363–365 for particle in general potential, 327 in path integral formalism, 345
Laguerre polynomials, 45
Lamb shift, 122–124, 183
Landau energy levels, 353–356
Landé g-factor, 176
lanthanides, 138
lasers, 12–13
lattice calculations, 347
Legendre polynomials, 42, 125, 260
Levinson’s theorem, 270–271
Lindblad equation, 242–245
linear operators, 65
Lippmann–Schwinger equation, 248–250, 283–284, 303
Lorentz invariance, 86, 311–312, 344
Low equation, 315–316
Lyman-α line, 47
magic numbers, 138–139
magnetic moment, 116, 353–354 also see gyromagnetic ratio
many-worlds interpretation, 97–102 matrix algebra, 19–21
matrix mechanics, 16–21, 154
Maxwell–Boltzmann statistics, 141
Maxwell equations, 363, 370
measurement, 89–92, 244–246 also see interpretations of quantum mechanics metals, 137, 141 molecules, 158, 188 also see ammonia, Born–Oppenheimer approximation, broken symmetry, chirality, cyanogen, orthohydrogen and orthodeuterium, parahydrogen and paradoxideuterium, rigid rotor moment-of-inertia tensor, 160 momentum, 78–80, 328, 333
negative energies, 84 neutron, 142
no-copying theorem, 405 noble gases, 137, 268 Noether’s theorem, 328–329 norms, see scalar products nucleus, see atomic nucleus
O(3) symmetry, 107
open systems, 237–246
operators, 64–65
orthogonal matrices, 106–107
orthogonal state vectors, 57–58 orthohydrogen and orthodeuterium, 166
orthonormal state vectors, 22, 60 “out” states, 282–287, 309 parahydrogen and paradoxideuterium, 166
parity, see space inversion
partial wave expansion, 292–299
Paschen–Back effect, 179
path-integral formalism, 340–347
Pauli exclusion principle, 135–141
Pauli matrices, 115
periodic boundary conditions, 2, 217
periodic table of elements, 136–138

© in this web service Cambridge University Press
www.cambridge.org
Subject Index

perms, 135
perturbation theory
 convergence, 304–307
 for general energy levels, 169–174, 183–188
 for transition rates, 214–218, 220–221
 old-fashioned, 303–304
 time-dependent, 214–215, 309–314
 also see Born approximation
phase shifts, 260–262, 297
 low energy, 262–264
 resonant, 266
 for shallow bound state, 318
 also see Levinson’s theorem, time delay
photoelectric effect, 5
photoionization, 218–220
photons, 5–6, 133, 140, 376–379
pions, 144, 152–153, 323
Planck distribution (of black-body radiation), 3, 12, 140
Planck’s constant h, 3–4, 9
plane waves, 14, 80
pointer states, see classical states
Poisson brackets, 21, 335
polar coordinates, 35
polarization vectors, 373, 378–379, 388–390
positivity, see density matrix
primary and secondary constraints, 336–337
principal quantum number n, 45–46, 156
probabilities, 25, 30, 59–60
 conservation, 26, 255, 257–258, 350–351
probability density, 25–26, 62
projection operators, 71
proton, 10, 142
 magnetic moment, 123
qbits, 402
 synthetic qbits, 406
quantum computers
 advantage over classical computers, 402–403
 error-correcting codes, 406
 gates, 404
 limitations, 404–406
 also see no-copying theorem, qbits
quantum electrodynamics, 23–24, 365–387
quantum key distribution, 387–391
Rabi oscillations, 232–234
radiative transitions, 17, 53–54, 300, 380–383
electric-dipole transitions, 17, 130–131, 151, 177–178, 383–384
electric-quadrupole and magnetic-dipole transitions, 385–387
selection rules, 46–47, 131, 151–152, 386
 also see Einstein A and B coefficients, spontaneous emission, stimulated emission
raising and lowering operators, 50, 112, 149, 373
Ramsauer–Townsend effect, 268
Ramsey interferometers, 232, 234–237
rare earths, 138
ray paths, 274
rays, 60, 75–76
Rayleigh–Jeans distribution, 3
realist interpretations, 97–98
recombination of hydrogen, 47
reduced mass, 10, 32, 47
reduced matrix element, 129
resolvent operator, 306, 315
resonances, 264–268, 299–303
rigid rotator, 158–167
Ritz combination principle, 8
rotational symmetry, 106–111
 unitary representations $D(R)$, 164
 also see angular momentum, $SU(2)$ formalism
Runge–Lenz vector, 154–155
scalar products, 57, 59
scattering, 25
general scattering theory, 282–323
potential scattering theory, 247–281
scattering amplitude, 252–254, 262, 273, 291
also see cross section, optical theorem
scattering length, 264, 319
Schrödinger equation, 15–16
for central potential, 32–39
for Coulomb potential, 43, 271
for harmonic oscillator, 49
time-dependent equation, 24, 82
Schrödinger picture, 82
Schrödinger’s cat, 91–92, 98
Schwarz inequality, 69
second class constraints, see first and second class constraints
semi-conductors, 141
Shubnikow–de Haas effect, 356
similarity transformations, 77
Slater determinant, 135
S-matrix, 284–287, 310–311
at resonance, 301–302
Solvay Conferences, 30
$\text{SO}(3)$, see rotational symmetry
$\text{SO}(3) \otimes \text{SO}(3)$ (or $\text{SO}(4)$)
symmetry, in hydrogen, 157–158
Sommerfeld quantization condition, 11, 203, 205
space inversion, 42, 46, 51, 107, 150–153
intrinsic parity, 152–153
space translation, 78–79, 332
spherical Bessel and Neumann functions, 260–261, 263
spherical components of vectors, 39, 129, 130
spherical harmonics, 39–42, 114, 166
addition theorem, 125
spin, 104–106, 110, 333
spin–orbit coupling, 105, 139, 175
also see fine structure
spontaneous emission, 11–12, 17, 223, 380–387
spontaneous symmetry breaking, see symmetry breaking
Stark effect, 179–183, 188
state vectors, 56–57
also see eigenstates, independent state vectors, orthogonal state vectors, orthonormal state vectors
statistical matrix, see density matrix statistics, see Bose and Fermi statistics
Stefan–Boltzmann constant σ, 4
Stern–Gerlach experiment, 90–91, 97, 116, 122
stimulated emission, 11–12, 222–224
strangeness, 145–146
strong interactions, 142–146
$SU(2)$ formalism for angular momentum, 126–128
$SU(2)$ symmetry in particle physics, 143
$SU(3)$ symmetry
for harmonic oscillator, 148–150
in particle physics, 146–147
symmetries, 74–78
also see charge symmetry, CPT symmetry, Galilean invariance, isospin invariance, rotational symmetry, $SU(3)$ \(\otimes\) $SU(3)$ (or $SO(4)$) symmetry, space inversion, space translation, strangeness, $SU(2)$ symmetry $SU(3)$ symmetry, time translation, time reversal, $U(1)$ symmetries
$3j$ symbols, 126
time delay, in scattering, 268–269
time-ordered products, 310–311
time reversal, 84, 153–154, 320–323
time translation, 82–83
traces of operators, 70–71
transformation theory, 23, 55
translations, see space translation, time translation
21 centimeter radiation, 387
two-slit experiment, 346
ultraviolet catastrophe, 3
ultraviolet divergences, 187
uncertainty principle, see Heisenberg
uncertainty principle
unitarity, 75–76
of the S-matrix, 285–286, 300–301, 318
unpolarized systems, 132, 211
\(U(1)\) symmetries, 146
vacuum state, 375
valence, 137
Van der Waals forces, 208–212
variational method, 188–191, 194
vector spaces, 56–57
virial theorem, 190–191
virtual particles, 184
von Neumann entropy, 73–74, 243–244
W and Z particles, xviii, 133
Watson–Fermi theorem, 323
wave function, see probability
density, Schrödinger equation,
state vector, wave mechanics,
wave packets
wave mechanics, 13–15
wave packets, 14, 56, 251–252
weak interactions, 144, 153
Wiener displacement law, 12
Wigner–Eckart theorem, 128–132, 181, 294
Wigner’s symmetry representation
theorem, 76
WKB approximation, 198–207, 265, 274
work function, 5
X-rays, 10
Yukawa (or shielded Coulomb)
potential, 259, 299, 306
Zeeman effect, 174–179
zero-point energy, 24, 51, 375–376