Lectures on Quantum Mechanics

Second Edition

Nobel Laureate Steven Weinberg combines exceptional physical insight with his gift for clear exposition, to provide a concise introduction to modern quantum mechanics, in this fully updated second edition of his successful textbook. Now including six brand new sections covering key topics such as the rigid rotator and quantum key distribution, as well as major additions to existing topics throughout, this revised edition is ideally suited to a one-year graduate course or as a reference for researchers. Beginning with a review of the history of quantum mechanics and an account of classic solutions of the Schrödinger equation, before quantum mechanics is developed in a modern Hilbert space approach, Weinberg uses his remarkable expertise to elucidate topics such as Bloch waves and band structure, the Wigner–Eckart theorem, magic numbers, isospin symmetry, and general scattering theory. Problems are included at the ends of chapters, with solutions available for instructors at www.cambridge.org/9781107111660.

STEVEN WEINBERG is a member of the Physics and Astronomy Departments at the University of Texas at Austin. His research has covered a broad range of topics in quantum field theory, elementary particle physics, and cosmology, and he has been honored with numerous awards, including the Nobel Prize in Physics, the National Medal of Science, and the Heinemann Prize in Mathematical Physics. He is a member of the US National Academy of Sciences, Britain's Royal Society, and other academies in the USA and abroad. The American Philosophical Society awarded him the Benjamin Franklin medal, with a citation that said he is "considered by many to be the preeminent theoretical physicist alive in the world today." His books for physicists include *Gravitation and Cosmology*, the three-volume work *The Quantum Theory of Fields*, and, most recently, *Cosmology*. Educated at Cornell, Copenhagen, and Princeton, he also holds honorary degrees from sixteen other universities. He taught at Columbia, Berkeley, M.I.T., and Harvard, where he was Higgins Professor of Physics, before coming to Texas in 1982. "Steven Weinberg, a Nobel Laureate in physics, has written an exceptionally clear and coherent graduate-level textbook on modern quantum mechanics. This book presents the physical and mathematical formulations of the theory in a concise and rigorous manner. The equations are all explained step-by-step, and every term is defined. He presents a fresh, integrated approach to teaching this subject with an emphasis on symmetry principles. Weinberg demonstrates his finesse as an excellent teacher and author."

Barry R. Masters, Optics and Photonics News

"... Lectures on Quantum Mechanics must be considered among the very best books on the subject for those who have had a good undergraduate introduction. The integration of clearly explained formalism with cogent physical examples is masterful, and the depth of knowledge and insight that Weinberg shares with readers is compelling."

Mark Srednicki, Physics Today

"Perhaps what distinguishes this book from the competition is its logical coherence and depth, and the care with which it has been crafted. Hardly a word is misplaced and Weinberg's deep understanding of the subject matter means that he leaves no stone unturned: we are asked to accept very little on faith ... it is for the reader to follow Weinberg in discovering the joys of quantum mechanics through a deeper level of understanding: I loved it!"

Jeff Forshaw, CERN Courier

"An instant classic . . . clear, beautifully structured and replete with insights. This confirms [Weinberg's] reputation as not only one of the greatest theoreticians of the past 50 years, but also one of the most lucid expositors. Pure joy."

The Times Higher Education Supplement

Lectures on Quantum Mechanics

Second Edition

Steven Weinberg The University of Texas at Austin

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/ 9781107111660

© Cambridge University Press 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data Weinberg, Steven, 1933– author. Lectures on quantum mechanics / Steven Weinberg, The University of Texas at Austin. – Second edition. pages cm Includes indexes.

ISBN 978-1-107-11166-0 (hbk.) 1. Quantum theory. I. Title. QC174.125.W45 2015 530.12–dc23 2015021123

ISBN 978-1-107-11166-0 Hardback

Additional resources for this publication at www.cambridge.org/9781107111660

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-1-107-11166-0 - Lectures on Quantum Mechanics: Second Edition Steven Weinberg Frontmatter <u>More information</u>

For Louise, Elizabeth, and Gabrielle

Cambridge University Press 978-1-107-11166-0 - Lectures on Quantum Mechanics: Second Edition Steven Weinberg Frontmatter <u>More information</u>

Contents

PREFACE page xv	/ii
NOTATION x	xi
1 HISTORICAL INTRODUCTION	1
1.1 Photons Black-body radiation Rayleigh–Jeans formula Planck formula Atomic constant Photoelectric effect Compton scattering	1 nts
1.2 Atomic Spectra Discovery of atomic nuclei \Box Ritz combination principle \Box Bohr quantization condition \Box Hydrogen spectrum \Box Atomic numbers and weights \Box Sommerfeld quantization condition \Box Einstein <i>A</i> and <i>B</i> coefficients \Box Lasers	
1.3 Wave Mechanics I De Broglie waves Davisson-Germer experiment Schrödinger equation 	13
1.4 Matrix Mechanics I Radiative transition rate Harmonic oscillator Heisenberg matrix algebra Commutation relations Equivalence to wave mechanics 	
1.5 Probabilistic Interpretation 2 Scattering □ Probability density and current □ Expectation values □ Equations 2 motion □ Eigenvalues and eigenfunctions □ Uncertainty principle □ Born rule f 5 transition probabilities 2	
Historical Bibliography	30
Problems	30

viii Contents
2 PARTICLE STATES IN A CENTRAL POTENTIAL 32
2.1Schrödinger Equation for a Central Potential32Hamiltonian for central potentials \Box Orbital angular momentum operator $L \Box$ Spectrum of $L^2 \Box$ Separation of wave function \Box Boundary conditions32
2.2 Spherical Harmonics39Spectrum of L_3 Associated Legendre polynomialsConstruction of spherical harmonicsharmonicsOrthonormalityParityLegendre polynomials
2.3 The Hydrogen Atom 43
Radial Schrödinger equation \Box Power series solution \Box Laguerre polynomials \Box Energy levels \Box Selection rules
2.4 The Two-Body Problem47
Reduced mass \Box Relative and center-of-mass coordinates \Box Relative and total momenta \Box Hydrogen and deuterium spectra
2.5 The Harmonic Oscillator 49
Separation of wave function \Box Raising and lowering operators \Box Spectrum \Box Normalized wave functions \Box Radiative transition matrix elements
Problems 54
3 GENERAL PRINCIPLES OF QUANTUM MECHANICS 55
3.1 States 55
Hilbert space \Box Vector spaces \Box Norms \Box Completeness and independence \Box Orthonormalization \Box Probabilities \Box Rays \Box Dirac notation
3.2 Continuum States 61
From discrete to continuum states \Box Normalization \Box Delta functions \Box Distributions
3.3 Observables 64
Operators Adjoints Matrix representation Eigenvalues Completeness of eigenvectors Schwarz inequality Uncertainty principle Dyads Projection operators Density matrix Von Neumann entropy Disentangled systems
3.4 Symmetries 74
Unitary operators \Box Wigner's theorem \Box Antiunitary operators \Box Continuous symmetries \Box Commutators
3.5 Space Translation 78
Momentum operators Commutation rules Momentum eigenstates Bloch waves Band structure

3.6

3.7

Time Translation and Inversion

Interpretations of Quantum Mechanics

 \Box Correlation of system and measuring apparatus \Box Classical states \Box Decoherence \Box Stern–Gerlach experiment \Box Schrödinger's cat \Box Where does the Born rule come from? \Box Instrumentalist interpretations \Box Decoherent histories \Box Realist interpretations \Box Many worlds? \Box Approach to the Born rule \Box Conclusion

Problems

4 SPIN ET CETERA 104

Contents

Hamiltonians □ Time-dependent Schrödinger equation □ Conservation laws □ Time reversal
Galilean invariance
Boost generator
Time-dependence of density matrix

Copenhagen interpretation \Box Measurement vs. unitary evolution of the density matrix

4.1 **Rotations**

Finite rotations \Box Rotation groups O(3) and SO(3) \Box Action on physical states \Box Infinitesimal rotations
Commutation relations
Total angular momentum
Spin

4.2 **Angular-Momentum Multiplets**

Raising and lowering operators \Box Spectrum of \mathbf{J}^2 and $J_3 \Box$ Spin matrices \Box Pauli matrices $\Box J_3$ -independence \Box Stern–Gerlach experiment

4.3 **Addition of Angular Momenta**

Choice of basis \square Clebsch–Gordan coefficients \square Sum rules for coefficients \square Hydrogen states
Symmetries of coefficients
Addition theorem for spherical harmonics $\Box 3j$ symbols \Box More sum rules $\Box SU(2)$ formalism

4.4 The Wigner–Eckart Theorem

Operator transformation properties \Box Theorem for matrix elements \Box Parallel matrix elements
Photon emission selection rules

4.5 **Bosons and Fermions**

Symmetrical and antisymmetrical states
Connection with spin Hartree approximation
Pauli exclusion principle
Periodic table for atoms
Magic numbers for nuclei
Temperature and chemical potential
Statistics
Insulators, conductors, semi-conductors

4.6 **Internal Symmetries**

Charge symmetry \Box Isotopic spin symmetry \Box Pions \Box Δ s \Box Strangeness \Box U(1)symmetries \Box *SU*(3) symmetry

4.7 Inversions

Space inversion \Box Orbital parity \Box Intrinsic parity \Box Parity of pions \Box Violations of parity conservation \Box P, C, and T

132

141

150

117

ix

82

86

102

106

112

128

www.cambridge.org

x Contents	
4.8 Algebraic Derivation of the Hydrogen Spectrum Runge–Lenz vector \Box <i>SO</i> (3) \otimes <i>SO</i> (3) commutation relations \Box Energy Scattering states \Box Four-dimensional interpretation	154 levels □
4.9 The Rigid Rotator	158
Laboratory and body-fixed coordinates \Box Rotational energy \Box Moment-of-i sor \Box Body-fixed angular momentum operator \Box Energy levels of symmetric Energy levels of general rotators \Box Rotator wave functions \Box Rotation repr $D_{M'M}^{J}(\mathbb{R})$ \Box Orthohydrogen and parahydrogen \Box Estimated energies	rotators \Box
Problems	167
5 APPROXIMATIONS FOR ENERGY EIGENVALUES	169
5.1 First-Order Perturbation Theory	169
Non-degenerate case: first-order energy and state vector \Box Degenerate case: energy, ambiguity in first-order state vector \Box A classical analog	first-order
5.2 The Zeeman Effect	174
Gyromagnetic ratio \Box Landé <i>g</i> -factor \Box Sodium D lines \Box Normal and a Zeeman effect \Box Paschen–Back effect	anomalous
5.3 The First-Order Stark Effect	179
Mixing of $2s_{1/2}$ and $2p_{1/2}$ states \Box Energy shift for weak fields \Box Energy strong fields	y shift for
5.4 Second-Order Perturbation Theory	183
Non-degenerate case: second-order energy and state vector \Box Degenerate case order energy, removal of ambiguity in first-order state vector \Box Ultraviolet ar divergences \Box Closure approximation \Box Second-order Stark effect	
5.5 The Variational Method	188
Upper bound on ground state energy \Box Excited states \Box Approximation to state Virial theorem \Box Other states	ate vectors
5.6 The Born–Oppenheimer Approximation	191
Reduced Hamiltonian \Box Hellmann–Feynman theorem \Box Estimate of corr Electronic, vibrational, and rotational modes \Box Effective theories	rections 🗆
5.7 The WKB Approximation	198
Approximate solutions \Box Validity conditions \Box Turning points \Box Energy eigone dimension \Box Energy eigenvalues – three dimensions	envalues –
5.8 Broken Symmetry	205
Approximate solutions for thick barriers Energy splitting Decoh	erence 🗆

	Contents	xi
-	Van der Waals Forces nsion of interaction in spherical harmonics Second-order perturbation th nance of the dipole–dipole term	208 heory □
Prob	lems	212
6	APPROXIMATIONS FOR TIME-DEPENDENT PROBLEMS	214
6.1 Differ	First-Order Perturbation Theory rential equation for amplitudes Approximate solution	214
6.2 Transi	Monochromatic Perturbations ition rate Fermi golden rule Continuum final states	215
	Ionization by an Electromagnetic Wave e of perturbation Conditions on frequency Ionization rate of hydrogenetic distate	218 ydrogen
6.4 Statio	Fluctuating Perturbations nary fluctuations Correlation function Transition rate	220
-	Absorption and Stimulated Emission of Radiation e approximation Transition rates Energy density of radiation B-coe ontaneous transition rate	222 fficients
	The Adiabatic Approximation y varying Hamiltonians Dynamical phase Non-dynamical pherate case	224 hase □
	The Berry Phase hetric character of the non-dynamical phase Closed curves in parameter neral formula for the Berry phase Spin in a slowly varying magnetic field	1
	Rabi Oscillations and Ramsey Interferometers state approximation Rabi oscillation frequency The Ramsey trick Purements of transition frequencies	232 recision
Expar	Open Systems r non-unitary evolution of density matrix r non-unitary evolution of density matrix r non-unitary evolution of density matrix r non-unitary evolution r	ositivity
Prob	lems	246

www.cambridge.org

xii Contents	
7 POTENTIAL SCATTERING	247
7.1 In-States	247
Wave packets \Box Lippmann–Schwinger equation \Box Wave packets at ear Spread of wave packet	rly times □
7.2 Scattering Amplitudes	252
Green's function for scattering \Box Definition of scattering amplitude \Box Wa late times \Box Differential cross section	ve packet at
7.3 The Optical Theorem	255
Derivation of theorem \Box Conservation of probability \Box Diffraction peak	
7.4 The Born Approximation	258
First-order scattering amplitude \Box Scattering by shielded Coulomb potentia	al
7.5 Phase Shifts	260
Partial wave expansion of plane wave \Box Partial wave expansion of "in" wave Partial wave expansion of scattering amplitude \Box Scattering cross section \Box length and effective range	
7.6 Resonances	264
Thick barriers \Box Breit–Wigner formula \Box Decay rate \Box Alpha decay \Box Townsend effect	Ramsauer-
7.7 Time Delay	268
Wigner formula 🗆 Causality	
7.8 Levinson's Theorem	270
Conservation of discrete states \Box Growth of phase shift	
7.9 Coulomb Scattering	271
Separation of wave function \Box Kummer functions \Box Scattering amplitude	
7.10 The Eikonal Approximation	273
WKB approximation in three dimensions \Box Initial surface \Box Ray paths \Box of phase \Box Calculation of amplitude \Box Application to potential scattering cross section \Box Phase of scattering amplitude \Box Long-range forces	
Problems	281
8 GENERAL SCATTERING THEORY	282
8.1 The S-Matrix	282
"In" and "out" states \Box Wave packets at early and late times \Box Definition of	the S-matrix

	Contents	xiii
	Rates ition probabilities in a spacetime box □ Decay rates □ Cross section ty □ Connection with scattering amplitudes □ Final states	287 ns □ Relative
8.3 Optica	The General Optical Theorem al theorem for multiparticle states Two-particle case	291
	The Partial Wave Expansion ete basis for two-particle states □ Two-particle S-matrix □ Total a sections □ Phase shifts □ High-energy scattering	292 and scattering
	Resonances Revisited rix near a resonance energy Consequences of unitarity General la Total and scattering cross sections Branching ratios	299 Breit–Wigner
Suffici	Old-Fashioned Perturbation Theory bation series for the S-matrix Functional analysis Square-integr ient conditions for convergence Upper bound on binding energies Born approximation Coulomb suppression	
	Time-Dependent Perturbation Theory development operator Interaction picture Time-ordered produbation series Lorentz invariance 'In–in' formalism	309 Icts □ Dyson
	Shallow Bound States equation Low-energy approximation Solution for scattering on-proton scattering Solution using Herglotz theorem	315 ng length □
balanc	Time Reversal of Scattering Processes reversal of free-particle states Time reversal of <i>in</i> and <i>out</i> state ce Time reversal in Born approximation Time reversal in distorte ximation Watson–Fermi theorem	
Probl	lems	323
9	THE CANONICAL FORMALISM	325
9.1 Station	The Lagrangian Formalism nary action Lagrangian equations of motion Example: spherica	326 Il coordinates
	Symmetry Principles and Conservation Laws er's theorem Conserved quantities from symmetries of Lagrang ation Rotations Symmetries of action	327 gian □ Space
	The Hamiltonian Formalism translation and Hamiltonian \Box Hamiltonian equations of motion inates again	329 □ Spherical

xiv Contents	
9.4 Canonical Commutation Relations 332 Conserved quantities as symmetry generators □ Commutators of canonical variables and conjugates □ Momentum and angular momentum □ Poisson brackets □ Jacob identity	s
9.5 Constrained Hamiltonian Systems 335 Example: particle on a surface Primary and secondary constraints First- and second-class constraints Dirac brackets Application to example	
9.6 The Path-Integral Formalism 340 Derivation of the general path integral □ Integrating out momenta □ The free particle □ □ Two-slit experiment □ Interactions 340	
Problems 347	7
10CHARGED PARTICLES IN ELECTROMAGNETIC FIELDS348	3
10.1 Canonical Formalism for Charged Particles348Equations of motion	
10.2 Gauge Invariance 351 Gauge transformations of potentials Gauge transformation of Lagrangian Gauge transformation of state vector Gauge invariance of energy eigenvalues 351	e
10.3 Landau Energy Levels 353 Hamiltonian in a uniform magnetic field \Box Energy levels \Box Near degeneracy \Box Fermi level \Box Periodicity in $1/B_z$ \Box Shubnikov–de Haas and de Haas–van Alphen effects	-
10.4 The Aharonov–Bohm Effect356Application of the eikonal approximation <a>D Interference between alternate ray pathsInterference between alternate ray pathsRelation to Berry phase <a>D Effect of field-free vector potential Periodicity in the fluxProblems360	
11 THE QUANTUM THEORY OF RADIATION 361	1
11.1 The Euler–Lagrange Equations 361 General field theories Variational derivatives of Lagrangian Lagrangian density 	1
11.2 The Lagrangian for Electrodynamics 363 Maxwell equations □ Charge density and current density □ Field, interaction, and matter Lagrangians	

Contents	XV
11.3 Commutation Relations for Electrodynamics Coulomb gauge Constraints Applying Dirac brackets	365
11.4 The Hamiltonian for Electrodynamics Evaluation of Hamiltonian Coulomb energy Recovery of Maxwell's eq	368 Juations
11.5 Interaction Picture Interaction picture operators Expansion in plane waves Polarization vertex	370 ctors
11.6 Photons	375
Creation and annihilation operators \Box Fock space \Box Photon energies \Box Vacu \Box Photon momentum \Box Photon spin \Box Varieties of polarization \Box Coherent	
11.7 Radiative Transition Rates	380
S-matrix for photon emission \Box Separation of center-of-mass motion \Box Generate \Box Electric-dipole radiation \Box Electric-quadrupole and magnetic-dipole 21 cm radiation \Box No $0 \rightarrow 0$ transitions	•
11.8 Quantum Key Distribution	387
Keys in cryptography \Box Using photon polarization: the BB84 protocol \Box dropper defeated	The eaves-
Problems	390
12 ENTANGLEMENT	392
12.1 Paradoxes of Entanglement	392
The Einstein–Podolsky–Rosen paradox \Box The Bohm paradox \Box Instantaneo nication? \Box Factorization of the evolution kernel \Box Entanglement entropy	us commu-
12.2 The Bell Inequalities	398
Local hidden-variable theories \Box Two-spin inequality \Box Generalized in Experimental tests	equality 🗆
12.3 Quantum Computation	402
Qbits □ Comparison with classical digital computers □ Computation as un formation □ Fourier transforms □ Gates □ Reading the memory □ No-copyi □ Error correction	•
AUTHOR INDEX	407
SUBJECT INDEX	412

Cambridge University Press 978-1-107-11166-0 - Lectures on Quantum Mechanics: Second Edition Steven Weinberg Frontmatter <u>More information</u> Cambridge University Press 978-1-107-11166-0 - Lectures on Quantum Mechanics: Second Edition Steven Weinberg Frontmatter More information

Preface

Preface to First Edition

The development of quantum mechanics in the 1920s was the greatest advance in physical science since the work of Isaac Newton. It was not easy; the ideas of quantum mechanics present a profound departure from ordinary human intuition. Quantum mechanics has won acceptance through its success. It is essential to modern atomic, molecular, nuclear, and elementary particle physics, and to a great deal of chemistry and condensed matter physics as well.

There are many fine books on quantum mechanics, including those by Dirac and Schiff from which I learned the subject a long time ago. Still, when I have taught the subject as a one-year graduate course, I found that none of these books quite fit what I wanted to cover. For one thing, I like to give a much greater emphasis than usual to principles of symmetry, including their role in motivating commutation rules. (With this approach the canonical formalism is not needed for most purposes, so a systematic treatment of this formalism is delayed until Chapter 9.) Also, I cover some modern topics that of course could not have been treated in the books of long ago, including numerous examples from elementary particle physics, alternatives to the Copenhagen interpretation, and a brief (very brief) introduction to the theory and experimental tests of entanglement and its application in quantum computation. In addition, I go into some topics that are often omitted in books on quantum mechanics: Bloch waves, time-reversal invariance, the Wigner-Eckart theorem, magic numbers, isotopic spin symmetry, "in" and "out" states, the "in-in" formalism, the Berry phase, Dirac's theory of constrained canonical systems, Levinson's theorem, the general optical theorem, the general theory of resonant scattering, applications of functional analysis, photoionization, Landau levels, multipole radiation, etc.

The chapters of the book are divided into sections, which on average approximately represent a single seventy-five minute lecture. The material of this book just about fits into a one-year course, which means that much else has had to be skipped. Every book on quantum mechanics represents an exercise in

xviii

Preface

selectivity – I can't say that my selections are better than those of other authors, but at least they worked well for me when I taught the course.

There is one topic I was not sorry to skip: the relativistic wave equation of Dirac. It seems to me that the way this is usually presented in books on quantum mechanics is profoundly misleading. Dirac thought that his equation is a relativistic generalization of the non-relativistic time-dependent Schrödinger equation that governs the probability amplitude for a point particle in an external electromagnetic field. For some time after, it was considered to be a good thing that Dirac's approach works only for particles of spin one half, in agreement with the known spin of the electron, and that it entails negative-energy states, states that when empty can be identified with the electron's antiparticle. Today we know that there are particles like the W^{\pm} that are every bit as elementary as the electron, and that have distinct antiparticles, and yet have spin one, not spin one half. The right way to combine relativity and quantum mechanics is through the quantum theory of fields, in which the Dirac wave function appears as the matrix element of a quantum field between a one-particle state and the vacuum, and not as a probability amplitude.

I have tried in this book to avoid an overlap with the treatment of the quantum theory of fields that I presented in earlier volumes.¹ Aside from the quantization of the electromagnetic field in Chapter 11, the present book does not go into relativistic quantum mechanics. But there are some topics that were included in *The Quantum Theory of Fields* because they generally are not included in courses on quantum mechanics, and I think they should be. These subjects are included here, especially in Chapter 8 on general scattering theory, despite some overlap with my earlier volumes.

The viewpoint of this book is that physical states are represented by vectors in Hilbert space, with the wave functions of Schrödinger just the scalar products of these states with basis states of definite position. This is essentially the approach of Dirac's "transformation theory." I do not use Dirac's bra–ket notation, because for some purposes it is awkward, but in Section 3.1 I explain how it is related to the notation used in this book. In any notation, the Hilbert space approach may seem to the beginner to be rather abstract, so to give the reader a greater sense of the physical significance of this formalism I go back to its historic roots. Chapter 1 is a review of the development of quantum mechanics from the Planck black-body formula to the matrix and wave mechanics of Heisenberg and Schrödinger and Born's probabilistic interpretation. In Chapter 2 the Schrödinger wave equation is used to solve the classic bound state problems of the hydrogen atom and harmonic oscillator. The Hilbert-space formalism is introduced in Chapter 3, and used from then on.

¹ S. Weinberg, *The Quantum Theory of Fields* (Cambridge University Press, 1995; 1996; 2000).

Preface

xix

Addendum for the Second Edition

Since the publication of the first edition, I have come to think that several additional topics needed to be included in this book. I have therefore added six new sections: Section 4.9 on the rigid rotator; Section 5.9 on van der Waals forces; Section 6.8 on Rabi oscillations and Ramsey interferometers; Section 6.9 on open systems, including a derivation of the Lindblad equation; Section 8.9 on time reversal of scattering processes, including a proof of the Watson-Fermi theorem; and Section 11.8 on quantum key distribution. There have also been many additions within the sections of the first edition, including discussions of the universality of black-body radiation in Section 1.1, lasers in Section 1.2, unentangled systems in Section 3.3, the groups O(3) and SO(3)in Section 4.1, 3*j* symbols and the addition theorem for spherical harmonics in Section 4.3, the application of the eikonal approximation to scattering by long-range forces in Section 7.10, and error-correcting codes in Section 12.3. I have also taken the opportunity to correct many minor errors, as well as a major error in the formulation of degenerate perturbation theory in Sections 5.1 and 5.4.

In Section 3.7 of the first edition I reviewed various interpretations of quantum mechanics, and explained why none of them seem to me entirely satisfactory. I have now reorganized and expanded this discussion, with no change in its conclusion.

* * * * *

I am grateful to Raphael Flauger and Joel Meyers, who as graduate students assisted me when I taught courses on quantum mechanics at the University of Texas, and suggested numerous changes and corrections to the lecture notes on which the first edition of this book was based. I am also indebted to Robert Griffiths, James Hartle, Allan Macdonald, and John Preskill, who gave me advice on various specific topics that proved helpful in preparing the first edition, and to Scott Aaronson, Jeremy Bernstein, Jacques Distler, Ed Fry, Christopher Fuchs, James Hartle, Jay Lawrence, David Mermin, Sonia Paban, Philip Pearle, and Mark Raizen who helped with the coverage of various topics in the second edition. Thanks are due to many readers who pointed out errors in the first edition, especially Andrea Bernasconi, Lu Quanhui, Mark Weitzman, and Yu Shi. Cumrun Vafa used the first half of the first edition as a textbook for a one-term graduate course on quantum mechanics that he gave at Harvard, and was able to make many valuable suggestions of points that should be included or better explained. Of course, only I am responsible for any errors that may remain in this book. Thanks are also due to Terry Riley, Abel Ephraim, and Josh Perlman for finding countless books and articles, and XX

Preface

to Jan Duffy for her helps of many sorts. I am grateful to Lindsay Barnes and Roisin Munnelly of Cambridge University Press for helping to ready this book for publication, to Dr. Steven Holt for his careful and sensitive copy editing, and especially to my editor, Simon Capelin, for his encouragement and good advice.

STEVEN WEINBERG

Notation

Latin indices i, j, k, and so on generally run over the three spatial coordinate labels, usually taken as 1, 2, 3.

The summation convention is not used; repeated indices are summed only where explicitly indicated.

Spatial three-vectors are indicated by symbols in boldface. In particular, ∇ is the gradient operator.

 ∇^2 is the Laplacian $\sum_i \frac{\partial^2}{\partial x^i} \frac{\partial x^i}{\partial x^i}$.

The three-dimensional 'Levi-Civita tensor' ϵ_{ijk} is defined as the totally antisymmetric quantity with $\epsilon_{123} = +1$. That is,

$$\epsilon_{ijk} \equiv \begin{cases} +1, & ijk = 123, \ 231, \ 312, \\ -1, & ijk = 132, \ 213, \ 321, \\ 0, & \text{otherwise.} \end{cases}$$

The Kronecker delta is

$$\delta_{nm} = \begin{cases} 1, & n = m, \\ 0, & n \neq m. \end{cases}$$

A hat over any vector indicates the corresponding unit vector: Thus, $\hat{\mathbf{v}} \equiv \mathbf{v}/|\mathbf{v}|$.

A dot over any quantity denotes the time-derivative of that quantity.

The step function $\theta(s)$ has the value +1 for s > 0 and 0 for s < 0.

The complex conjugate, transpose, and Hermitian adjoint of a matrix A are denoted A^* , A^T , and $A^{\dagger} = A^{*T}$, respectively. The Hermitian adjoint of an operator O is denoted O^{\dagger} . +H.c. or + c.c. at the end of an equation indicates the addition of the Hermitian adjoint or complex conjugate of the foregoing terms.

Where it is necessary to distinguish operators and their eigenvalues, upper case letters are used for operators and lower case letters for their eigenvalues. This convention is not always used where the distinction between operators and eigenvalues is obvious from the context. xxii

Notation

Factors of the speed of light *c*, the Boltzmann constant $k_{\rm B}$, and Planck's constant *h* or $\hbar \equiv h/2\pi$ are shown explicitly.

Unrationalized electrostatic units are used for electromagnetic fields and electric charges and currents, so that e_1e_2/r is the Coulomb potential of a pair of charges e_1 and e_2 separated by a distance r. Throughout, -e is the unrationalized charge of the electron, so that the fine structure constant is $\alpha \equiv e^2/\hbar c \simeq 1/137$.

Numbers in parenthesis at the end of quoted numerical data give the uncertainty in the last digits of the quoted figure. Where not otherwise indicated, experimental data are taken from K. Nakamura *et al.* (Particle Data Group), "Review of Particle Properties," *J. Phys. G* **37**, 075021 (2010).