The Price of Oil

Drawing on their extensive knowledge of the oil industry, Roberto F. Aguilera and Marian Radetzki provide an in-depth examination of the price of the world's most important commodity. They argue that although oil has experienced an extraordinary price increase over the past few decades, we have now reached a turning point where scarcity, uncertain supply and high prices will be replaced by abundance, undisturbed availability and suppressed price levels. They look at the potential of new global oil revolutions to bring the upward price push to an end and examine the implications of this turnaround for the world economy, as well as for politics, diplomacy, military interventions and the efforts to stabilize climate. This book will appeal to a wide readership of both academics and professionals working in the energy industry, as well as to general readers interested in the on-going debate about oil prices.

Roberto F. Aguilera is an adjunct research fellow at Curtin University, Australia, and an associate of Servipetrol Ltd., Canada. He has participated in numerous energy studies, including with the World Petroleum Council, US National Petroleum Council and UN Expert Group on Resource Classification.

Marian Radetzki is Professor of Economics at Luleå University of Technology, Sweden. He has held visiting professorships at Colorado School of Mines, and at Pontificia Catholic University of Chile, researching on minerals and energy. In the 1970s, Professor Radetzki worked as Chief Economist at the International Copper Cartel, and has undertaken numerous consultancies over the years.
The Price of Oil

ROBERTO F. AGUILERA
MARIAN RADETZKI
Contents

Figures

Table

Acknowledgments

1 Introduction and overview 1

PART I OIL’S EXTRAORDINARY PRICE HISTORY: HOW CAN IT BE EXPLAINED? 9

2 The price of oil since the early 1970s: observations and implications 11

3 OPEC and its behavior cannot explain oil’s price performance 23

4 Can depletion and rising costs explain the price developments? 32

5 State ownership, government greed and the slowdown of capacity expansion 42

6 The resource curse and capacity destruction 59

PART II THE SHALE AND CONVENTIONAL OIL REVOLUTIONS: LOW PRICES AHEAD 79

7 The shale revolution: US achievements to date and envisaged impacts on global energy markets 81

8 Longevity of US shale oil: have we only seen the beginning? 95

9 The conventional oil revolution 110
vi CONTENTS

10 Environmental issues arising from the revolutions 121
11 Will the revolutions spread globally? 135
12 A substantial long-term price fall in store 157

PART III GLOBAL IMPLICATIONS FOR THE MACROECONOMY, THE ENVIRONMENT AND FOR POLITICS 171

13 Impact on macroeconomy and trade balances 173
14 Climate policy with low oil prices 184
15 Political repercussions 200

CONCLUSIONS 211

16 What have we learned? 213

References 221
Index 235
Figures

2.1 Price indices in constant money, 1970–1972 = 100 page 12
2.2 Oil, aluminum and copper consumption growth, percent per year 19
4.1 Estimates of ultimately recoverable resources at different points in time 36
4.2 Oil resources and cost of exploitation, 2008 $/bl 41
5.1 Proved oil reserves by company, 2010, billion barrels 56
6.1 Loss of oil due to political crises, percent of global supply 62
6.2 Libya oil production, mbd 68
6.3 Iran and Iraq oil production, mbd 69
6.4 Venezuela and Nigeria oil production, mbd 72
7.1 US crude oil production, 1900–2016, thousand barrels per day 84
8.1 Foster S-curve for infancy, explosion and maturation of technological progress associated with US shale oil 98
8.2 Bakken oil production and rig count 101
8.3 US oil production forecasts by EIA, mbd 104
9.1 US conventional oil production, 1985–2016, mbd 115
12.1 Short-run price determination 161
12.2 Long-run price determination 163
12.3 World primary energy mix, 1850–2035 166
14.1 Carbon dioxide emissions, million tonnes 191
Tables

1.1 Values of output and trade in 2013 for some major primary commodities, $ billion page 2
2.1 The importance of oil in the world economy 20
3.1 OPEC oil production, capacity and quota, 2004, mbd 26
4.1 Proved reserves/production ratios for oil and copper, years 34
5.1 Zambian copper industry performance 55
6.1 Total capacity and spare capacity in Saudi Arabia and the rest of OPEC 65
6.2 Resource curse and oil production 75
8.1 US oil (and NGLs) average annual output growth. Actual (2008–2014) and EIA projections 96
9.1 Frack jobs according to formation type in US, Canada and the ROW 113
11.1 Key assumptions for projections of ROW shale and conventional oil revolutions to 2035 in reference, high and low cases 144
11.2 Non-US shale oil production costs, years 2014 and 2035, $/bl 148
11.3 Speculative ROW shale oil impact to 2035, reference case, mbd 150
11.4 Non-US production costs, conventional oil revolution, years 2014 and 2035, $/bl 152
11.5 Speculative ROW conventional oil rise by 2035 resulting from spread of shale extraction methods, reference case, mbd 153
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.6</td>
<td>Speculative ROW shale and conventional oil revolutions’ impact to 2035, reference, high and low cases, mbd</td>
</tr>
<tr>
<td>13.1</td>
<td>Growth of real US GDP* in oil shock episodes, percent per year</td>
</tr>
<tr>
<td>13.2</td>
<td>Impact of nominal oil price hikes on trade balances of OECD countries</td>
</tr>
<tr>
<td>14.1</td>
<td>Unused reserves in 2041 with IEA's New Policies Scenario</td>
</tr>
</tbody>
</table>
Acknowledgments

We wish to express our gratitude to Phillip Crowson [Honorary Professor at the Centre for Energy, Petroleum and Mineral Law and Policy at the University of Dundee and former Chief Economist of Rio Tinto Ltd.] and to Thorvaldur Gylfason [Professor of Economics at the University of Iceland and Research Fellow at CESifo Group Munich] for the thoughtful and sometimes healthily acerbic comments offered on the manuscript. Sincere thanks also to Roberto Aguilera [CNOOC Nexen Research Chair in Tight Oil and Unconventional Gas at the University of Calgary, President of Servipetrol Ltd., and father of one of the co-authors] for the careful review of several engineering and geological aspects.

Three anonymous readers must be credited with improvements that have been implemented in the book following their rigorous scrutiny of our proposal and manuscript.

While we gratefully acknowledge all the above, we are solely responsible for the errors and deficiencies that still remain.

Special thanks are directed to Jan-Olof Edberg, chairman of Insamlingsstiftelsen Naturresursernas Ekonomi, a Swedish research foundation, for financially supporting our project.

Finally, we wish to convey our appreciation for the support and encouragement received from Chris Harrison, Phil Good, Claire Wood, Matt Lloyd and Finola O’Sullivan at Cambridge University Press. Thanks also to those involved in the production process, especially David Mackenzie, Jenny Slater, Emma Collison and Penny Harper.

The subjects covered in this book are all of great importance, and most of them provide ample scope for new insights and improved understanding. We feel honored and privileged for the opportunity to handle the issues analytically and to present our results to a wider audience.