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1 Introduction

This introductory chapter pursues three principal goals. First, we show that computa-

tional modeling is essential to ensure progress in cognitive science. Second, we provide

an introduction to the abstract idea of modeling and its many and varied applications.

Third, we survey some of the issues involved in the interpretation of model output,

including in particular how models can help constrain scientists’ own thinking.

1.1 Models and Theories in Science

Cognitive scientists seek to understand how the mind works. That is, we want to describe

and predict people’s behavior, and we ultimately wish to explain it, in the same way that

physicists predict the motion of an apple that is dislodged from its tree (and can accu-

rately describe its downward path) and explain its trajectory (by appealing to gravity).

For example, if you forget someone’s name when you are distracted seconds after being

introduced to her, we would like to know what cognitive process is responsible for this

failure. Was it lack of attention? Forgetting over time? Can we know ahead of time

whether or not you will remember that person’s name?

The central thesis of this book is that to answer questions such as these, cognitive

scientists must rely on quantitative mathematical models, just like physicists who

research gravity. We suggest that to expand our knowledge of the human mind,

consideration of the data and verbal theorizing are insufficient on their own.

This thesis is best illustrated by considering something that is (just a little) simpler

and more readily understood than the mind. Have a look at the data shown in Figure 1.1,

which represent the position of planets in the night sky over time.

How might one describe this peculiar pattern of motion? How would you explain it?

The strange loops in the otherwise consistently curvilinear paths describe the famous

“retrograde motion” of the planets – that is, their propensity to suddenly reverse direc-

tion (viewed against the fixed background of stars) for some time before resuming their

initial path. What explains retrograde motion? It took more than a thousand years for

a satisfactory answer to that question to become available, when Copernicus replaced

the geocentric Ptolemaic system with a heliocentric model. Today, we know that retro-

grade motion arises from the fact that the planets travel at different speeds along their

orbits; hence, as Earth “overtakes” Mars, for example, the red planet appears to reverse

direction as it falls behind the speeding Earth.
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4 Introduction

Figure 1.1 An example of data that defy easy description and explanation without a quantitative

model. Figure taken from Proceedings of the Royal Society of London. Series A, Mathematical

and Physical Sciences, Vol. 336, No. 1604, A Symposium on Planetary Science in Celebration of

the Quincentenary of Nicolaus Copernicus 1473–1543. (Jan. 15, 1974), pp. 105–114. Reprinted

with permission.

This example permits several conclusions that will be relevant throughout the remain-

der of this book. First, the pattern of data shown in Figure 1.1 defies description and

explanation unless one has a model of the underlying process. It is only with the aid of a

model that one can describe and explain planetary motion, even at a verbal level (readers

who doubt this conclusion may wish to invite friends or colleagues to make sense of the

data without knowing their source).

Second, any model that explains the data is itself unobservable. That is, although the

Copernican model is readily communicated and represented (so readily, in fact, that

we decided to omit the standard figure showing a set of concentric circles), it cannot

be directly observed. Instead, the model is an abstract explanatory device that “exists”

primarily in the minds of the people who use it to describe, predict, and explain the data.

Third, there nearly always are several possible models that can explain a given data

set. This point is worth exploring in a bit more detail. The overwhelming success of the

heliocentric model often obscures the fact that, at the time of Copernicus’ discovery,

there existed a fairly successful alternative, namely the geocentric model of Ptolemy

shown in Figure 1.2. The model explained retrograde motion by postulating that while

orbiting around the Earth, the planets also circle around a point along their orbit. On the

additional assumption that the Earth is slightly offset from the center of the planets’

orbit, this model provides a reasonable account of the data, limiting the positional
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1.1 Models and Theories in Science 5

Figure 1.2 The geocentric model of the solar system developed by Ptolemy. It was the

predominant model for some 1,300 years.

discrepancies between predicted and actual locations of, say, Mars to about 1◦ (Hoyle,

1974). Why, then, did the heliocentric model so rapidly and thoroughly replace the

Ptolemaic system?1

The answer to this question is quite fascinating and requires that we move toward a

quantitative level of modeling.

Conventional wisdom holds that the Copernican model replaced geocentric notions of

the solar system because it provided a better account of the data. But what does “better”

mean? Surely it means that the Copernican system predicted the motion of planets

with less quantitative error – that is, less than the 1◦ error for Mars just mentioned –

than its Ptolemaic counterpart? Intriguingly, this conventional wisdom is only partially

correct. Yes, the Copernican model predicted the planets’ motion in latitude better than

the Ptolemaic theory, but this difference was slight compared to the overall success of

both models in predicting motion in longitude (Hoyle, 1974). What gave Copernicus

the edge, then, was not “goodness-of-fit” alone2 but also the intrinsic elegance and

simplicity of his model: compare the Copernican account by a set of concentric circles

with the complexity of Figure 1.2, which only describes the motion of a single planet.

There is an important lesson to be drawn from this fact: The choice among competing

models – and remember, there are always several to choose from – inevitably involves an

intellectual judgment in addition to quantitative examination. Of course, the quantitative

performance of a model is at least as important as are its intellectual attributes. Coperni-

cus would not be commemorated today had the predictions of his model been inferior to

those of Ptolemy; it was only because the two competing models were on an essentially

1 Lest one think that the heliocentric and geocentric models exhaust all possible views of the solar system, it is

worth clarifying that there is an infinite number of equivalent models that can adequately capture planetary

motion because relative motion can be described with respect to any possible vantage point.
2 “Goodness-of-fit” is a term for the degree of quantitative error between a model’s predictions and the data;

this important term and many others are discussed in detail in Chapter 2.
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6 Introduction

equal quantitative footing that other intellectual judgments, such as a preference for

simplicity over complexity, came into play.

If the Ptolemaic and Copernican models were quantitatively comparable, why do we

use them to illustrate our central thesis that a purely verbal level of explanation for natu-

ral phenomena is insufficient and that all sciences must seek explanations at a quantita-

tive level? The answer is contained in the crucial modification to the heliocentric model

offered by Johannes Kepler nearly a century later. Kepler replaced the circular orbits in

the Copernican model by ellipses with differing eccentricities (or “egg-shapedness”) for

the various planets. By this straightforward mathematical modification, Kepler achieved

a virtually perfect fit of the heliocentric model, with near-zero quantitative error. There

no longer was any appreciable quantitative discrepancy between the model’s predictions

and the observed paths of planets. Kepler’s model has remained in force essentially

unchanged for more than four centuries.

The acceptance of Kepler’s model permits two related conclusions, one that is obvious

and one that is equally important but perhaps less obvious. First, if two models are

equally simple and elegant (or nearly so), the one that provides the better quantitative

account will be preferred. Second, the predictions of the Copernican and Keplerian

models cannot be differentiated by verbal interpretation alone. Both models explain

retrograde motion by the fact that Earth “overtakes” some planets during its orbit, and

the differentiating feature of the two models – whether orbits are presumed to be circular

or elliptical – does not entail any differences in predictions that can be appreciated by

purely verbal analysis. That is, although one can talk about circles and ellipses (e.g.

“one is round, the other one egg-shaped”), those verbalizations cannot be turned into

testable predictions. Remember, Kepler reduced the error for Mars from 1◦ to virtually

zero, and we challenge you to achieve this by verbal means alone.

Let us summarize the points we have made so far:

1. Data never speak for themselves but require a model to be understood and to be

explained.

2. Verbal theorizing alone ultimately cannot substitute for quantitative analysis.

3. There are always several alternative models that vie for explanation of data and

we must select among them.

4. Model selection rests on both quantitative evaluation and intellectual and schol-

arly judgment.

All of these points will be explored in the remainder of this book. We next turn our

attention from the night sky to the inner workings of our mind.

1.2 Quantitative Modeling in Cognition

1.2.1 Models and Data

Let’s try this again: Have a look at the data in Figure 1.3. Does it remind you of

planetary motion? Probably not, but it should be at least equally challenging to discern
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1.2 Quantitative Modeling in Cognition 7

Figure 1.3 Observed recognition scores as a function of observed classification confidence for

the same stimuli (each number identifies a unique stimulus). See text for details. Figure

reprinted from Nosofsky, R. M., Tests of an exemplar mode for relating perceptual classification

and recognition memory, Journal of Experimental Psychology: Human Perception and

Performance, 17, 3–27, 1991, published by the American Psychological Association,

reprinted with permission.

a meaningful pattern in this case at it was in the example from astronomy. Perhaps

the pattern will become recognizable if we tell you about the experiment conducted

by Nosofsky (1991) from which these data are taken. In that experiment, people were

trained to classify a small set of cartoon faces into two arbitrary categories. We might

call the two categories the Campbells and the MacDonalds, and their members might

differ on a set of facial features such as length of nose and eye separation.

On a subsequent transfer test, people were presented with a larger set of faces,

including those used at training plus a number of new ones. For each face, people had

to make two decisions. The first decision was which category the face belonged to

and the confidence of that decision (called “classification” in the figure, shown on the

X-axis). The second decision was whether or not the face had been shown during

training (“recognition” on the Y-axis). Each data point in the figure, then, represents

those two responses, averaged across participants, for a given face (identified by ID

number, which can be safely ignored). The correlation between those two measures was

found to be r = 0.36.

Before we move on, see if you can draw some conclusions from the pattern in

Figure 1.3. Do you think that the two tasks have much to do with each other? Or would

you think that classification and recognition are largely unrelated and that knowledge

of one response would tell you very little about what response to expect on the other
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8 Introduction

Figure 1.4 Observed and predicted classification (left panel) and recognition (right panel).

Predictions are provided by the GCM; see text for details. Perfect prediction is represented by

the diagonal lines. Figure reprinted from Nosofsky, R. M., Tests of an exemplar mode for

relating perceptual classification and recognition memory, Journal of Experimental Psychology:

Human Perception and Performance, 17, 3–27, 1991, published by the American Psychological

Association, reprinted with permission.

task? After all, if r = 0.36, then knowledge of one response reduces uncertainty about

the other one by only 13%, leaving a full 87% unexplained, right?

Wrong. There is at least one quantitative cognitive model (called the GCM and

described a little later), which can relate those two types of responses with considerable

certainty. This is shown in Figure 1.4, which separates classification and recognition

judgments into two separate panels, each showing the relationship between observed

responses (on the Y-axis) and the predictions of the GCM (X-axis). To clarify, each point

in Figure 1.3 is shown twice in Figure 1.4, once in each panel, and in each instance it is

plotted as a function of the predicted response obtained from the model.

The precision of predictions in each panel is remarkable: If the model’s predictions

were 100% perfect, then all points would fall on the diagonal. They do not, but they

come close (accounting for 96% and 92% of the variance in classification and recogni-

tion, respectively). The fact that these accurate predictions were provided by the same

model tells us that classification and recognition can be understood and related to each

other within a common psychological theory. Thus, notwithstanding the low correlation

between the two measures, there is an underlying model that explains how both tasks

are related and permits accurate prediction of one response from knowledge of the other.

This model will be presented in detail later in this chapter (Section 1.2.3); for now,

it suffices to acknowledge that the model relies on the comparison between each test

stimulus and all previously encountered exemplars in memory.

The two figures enforce a compelling conclusion: “The initial scatterplot . . . revealed

little relation between classification and recognition performance. At that limited level

of analysis, one might have concluded that there was little in common between the

fundamental processes of classification and recognition. Under the guidance of the
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1.2 Quantitative Modeling in Cognition 9

formal model, however, a unified account of these processes is achieved” (Nosofsky,

1991, p. 9). Exactly paralleling the developments in 16th-century astronomy, data in

contemporary psychology are ultimately only fully interpretable with the aid of a quanti-

tative model. We can thus reiterate our first two conclusions from above and confirm that

they apply to cognitive psychology as well, namely that data never speak for themselves,

but require a model to be understood and to be explained, and that verbal theorizing

alone cannot substitute for quantitative analysis. But what about the remaining earlier

conclusions concerning model selection?

Nosofsky’s (1991) modeling included a comparison between his favored exemplar

model, whose predictions are shown in Figure 1.4, and an alternative “prototype” model.

The details of the two models are not relevant here; it suffices to note that the prototype

model compares a test stimulus to the average of all previously encountered exemplars,

whereas the exemplar model performs the comparison one-by-one between the test

stimulus and each exemplar and sums the result.3 Nosofsky found that the prototype

model provided a less satisfactory account of the data, explaining only 92% and 87%

of the classification and recognition variance, respectively, or about 5% less than the

exemplar model. Hence, the earlier conclusions about model selection apply in this

instance as well: There were several alternative models, and the choice between them

was based on clear quantitative criteria.

Thus far, we initiated our discussion with the data and we then – poof! – revealed a

quantitative model that spectacularly turned an empirical mystery or mess into theoreti-

cal currency. In many circumstances, this is what modelers might do: they are confronted

with new data but have an existing model at hand, and they wish to examine how well

the model can handle the data. In other circumstances, however, researchers might invert

this process and begin with an idea “from scratch.” That is, you might believe that some

psychological process is worthy of exploration and empirical test. The next chapter pro-

vides an in-depth example of how one might proceed under those circumstances. Before

we get into those details, however, we briefly describe how the large number of models

and mode applications can be differentiated into two broad categories, namely models

that simply describe data vs. models that explain the underlying cognitive processes.

1.2.2 Data Description

Knowingly or not, we have all used models to describe or summarize data, and at first

glance this appears quite straightforward. For example, we probably would not hesitate

to describe the salaries of all 150 members of the Australian House of Representatives

by their average because in this case there is little doubt that the mean is the proper

“model” of the data (notwithstanding the extra allowances bestowed upon Ministers).

Why would we want to “model” the data in this way? Because we are replacing the

3 Astute readers may wonder how the two could possibly differ. The answer lies in the fact that the similarity

rule involved in the comparisons by the exemplar model is non-linear; hence, the summed individual

similarities differ from that involving the average. This non-linearity turns out to be crucial to the model’s

overall power. The fact that subtle matters of arithmetic can have such drastic consequences further

reinforces the notion that purely verbal theorizing is of limited value.
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10 Introduction

data points (N = 150 in this instance) with a single estimated “parameter.”4 In this

instance, the parameter is the sample mean, and reducing 150 points into one facilitates

understanding and efficient communication of the data.

However, we must not become complacent in light of the apparent ease with which

we can model data by their average. As a case in point, consider U.S. President Bush’s

2003 statement in promotion of his tax cut, that “under this plan, 92 million Americans

receive an average tax cut of $1,083.” Although this number, strictly speaking, was not

incorrect, it arguably did not represent the best model of the proposed tax cut, given that

80% of taxpayers would receive less than this cut, and nearly half (i.e. some 45 million

people) would receive less than $100 (Verzani, 2004). The distribution of tax cuts was

so skewed (bottom 20% of income earners slated to receive $6 compared to $30,127 for

the top 1%) that the median or a trimmed mean would have been the preferable model

of the proposed legislation in this instance.

Controversies about the proper model with which to describe data also arise in cog-

nitive science, although fortunately with more transparency than in the political arena.

In fact, data description, by itself, can have considerable psychological impact. As a

case in point, consider the debate on whether learning of a new skill is best understood

as following a “Power Law” or is better described by an exponential improvement

(Heathcote et al., 2000). There is no doubt that the benefits from practice accrue in

a non-linear fashion: The first time you try your hands at a new skill (for example,

creating an Ikebana arrangement), things take seemingly forever (and the output may

not be worth writing home about). The second and third time round, you will notice

vast improvements, but eventually, after some dozens of trials, chances are that further

improvements will be small indeed.

What is the exact functional form of this pervasive empirical regularity? For several

decades, the prevailing opinion had been that the effect of practice is best captured by a

“Power law” – that is, by the function (shown here in its simplest possible form),

RT = N−β , (1.1)

where RT represents the time to perform the task, N represents the number of learning

trials to date, and β is the learning rate. Parameters of models are often represented

by Greek letters, and Appendix A lists these in full; in this case, β is the Greek letter

Beta. Figure 1.5 shows sample data, taken from Palmeri (1997)’s Experiment 3, with

the appropriate best-fitting power function superimposed as a dashed line. Participants

judged the numerosity of random dot patterns that contained between 6 and 11 dots.

Training extended over several days and each pattern was presented numerous times.

The figure shows the training data for one participant and one particular pattern.

Heathcote et al. (2000) argued that the data are better described by an exponential

function given by (again in its simplest possible form),

RT = e−αN , (1.2)

4 We will provide a detailed definition of what a parameter is in Chapter 2. For now, it suffices to think of a

parameter as a number that carries important information and that determines the behavior of the model.
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Figure 1.5 Sample power law learning function (solid line) and alternative exponential function

(dashed line) fitted to the same data. Data are represented by dots and are taken from Palmeri

(1997)’s Experiment 3 (Subject 3, Pattern 13). To fit the data, the power and exponential

functions were a bit more complex than described in Equations 1.1 and 1.2 because they

additionally contained an asymptote (A) and a multiplier (B). Hence the power function took the

form RT = AP + BP × (N + 1)−β and the exponential function was RT = AE + BE × e−αN .

where N is as before and α the learning rate. The best-fitting exponential function is

shown by the dashed line in Figure 1.5; you will note that the two competing descrip-

tions or models do not appear to differ much.5 The power function captures the data

well, but so does the exponential function, and there is not much to tell between them:

The residual mean-squared deviation (RMSD), which represents the average deviation

of the data points from the predicted function, was 482.4 for the Power function com-

pared to 526.9 for the exponential. Thus, in this instance the Power function fits “better”

(by providing some 50 ms less error in its predictions than the exponential), but given

that RT’s range from somewhere less than 1,000 ms to 7 seconds, this difference may

not be considered particularly striking.

So, why would this issue be of any import? Granted, we wish to describe the data

by the appropriate model, but surely neither of the models in Figure 1.5 misrepresents

essential features of the data anywhere near as much as U.S. President Bush did by

reporting only the average implication of his proposed tax cut. The answer is that the

choice of the correct descriptive model, in this instance, carries important implications

about the psychological nature of learning. As shown in detail by Heathcote et al.

(2000), the mathematical form of the exponential function necessarily implies that the

5 For now, we just present those “best-fitting” functions without explaining how they were obtained. We begin

the discussion of how to fit models to data in Chapter 3.

www.cambridge.org/9781107109995
www.cambridge.org


Cambridge University Press
978-1-107-10999-5 — Computational Modeling of Cognition and Behavior
Simon Farrell , Stephan Lewandowsky 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

12 Introduction

learning rate, relative to what remains to be learned, is constant throughout practice.

That is, no matter how much practice you have had, learning continues by enhancing

your performance by a constant fraction. By contrast, the mathematics of the power

function imply that the relative learning rate is slowing down as practice increases.

That is, although you continue to show improvements throughout, the rate of learning

decreases with increasing practice. It follows that the proper characterization of skill

acquisition data by a descriptive model, in and of itself, has considerable psychological

implications (we do not explore those implications here; see Heathcote et al., 2000, for

pointers to the background).

Just to wrap up this example, Heathcote et al. (2000) concluded after re-analyzing a

large body of existing data that the exponential function provided a better description

of skill acquisition than the hitherto presumed “Power law.” For our purposes, their

analysis permits the following conclusions. First, quantitative description of data, by

itself, can have considerable psychological implications because it prescribes crucial

features of the learning process. Second, the example underscores the importance of

model selection that we alluded to earlier; in this instance, one model was chosen over

another on the basis of strict quantitative criteria. We revisit this issue in Chapter 10.

Third, the fact that Heathcote et al.’s model selection considered the data of individual

subjects, rather than the average across participants, identifies a new issue – namely

the most appropriate way in which to apply a model to the data from more than one

individual – that we consider in Chapter 5.

The selection among competing functions is not limited to the effects of practice.

Debates about the correct descriptive function have also figured prominently in the

study of forgetting. Does the rate of forgetting differ with the extent of learning? Is

the rate of information loss constant over time? Although the complete pattern of results

is fairly complex, two conclusions appear warranted (Wixted, 2004a). First, the degree

of learning does not affect the rate of forgetting. Hence, irrespective of how much you

cram for an exam, you will lose the information at the same rate – but of course this is

not an argument against dedicated study; if you learn more, you will also retain more,

irrespective of the fact that the rate of loss per unit time remains the same. Second,

the rate of forgetting decelerates over time. That is, whereas you might lose some 30%

of the information on the first day, on the second day the loss may be down to 20%,

then 10%, and so on. Again, as in the case of practice, two conclusions are relevant

here. First, quantitative comparison among competing descriptive models was required

to choose the appropriate function (it is a Power function, or something very close to

it). Second, although the shape of the “correct” function has considerable theoretical

import because it may imply that memories are “consolidated” over time after study (see

Wixted, 2004a; 2004b, for a detailed consideration, and see Brown and Lewandowsky,

2010, for a contrary view), the function itself has no psychological content.

The mere description of data can also have psychological implications when the

behavior it describes is contrasted to normative expectations (Luce, 1995). Normative

behavior refers to how people would behave if they conformed to the rules of logic

or probability. For example, consider the following syllogism involving two premises

(P) and a conclusion (C). P1: All polar bears are animals. P2: Some animals are white.

www.cambridge.org/9781107109995
www.cambridge.org

