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Preface

This is a two-volume series of monographs. This series provides a self-
contained exposition of basic Floer homology in both open and closed string
contexts, and systematic applications to problems in Hamiltonian dynamics
and symplectic topology. The basic objects of study in these two volumes are
the geometry of Lagrangian submanifolds and the dynamics of Hamiltonian
diffeomorphisms and their interplay in symplectic topology.

The classical Darboux theorem in symplectic geometry reveals the flexibil-
ity of the group of symplectic transformations. On the other hand, Gromov and
Eliashberg’s celebrated theorem (El87) reveals the subtle rigidity of symplectic
transformations: the subgroup Symp(M, ω) consisting of symplectomorphisms
is closed in Diff(M) with respect to the C0 topology. This demonstrates that the
study of symplectic topology is subtle and interesting. Eliashberg’s theorem
relies on a version of the non-squeezing theorem, such as the one proved by
Gromov (Gr85) using the machinery of pseudoholomorphic curves. Besides
Eliashberg’s original combinatorial proof of this non-squeezing result, there
is another proof given by Ekeland and Hofer (EkH89) using the classical
variational approach of Hamiltonian systems. The interplay between these
two facets of symplectic geometry, namely the analysis of pseudoholomor-
phic curves and Hamiltonian dynamics, has been the main driving force in
the development of symplectic topology since Floer’s pioneering work on
his semi-infinite dimensional homology theory, which we now call Floer
homology theory.

Hamilton’s equation ẋ = XH(t, x) arises in Hamiltonian mechanics and the
study of its dynamics has been a fundamental theme of investigation in physics
since the time of Lagrange, Hamilton, Jacobi, Poincaré and others. Many math-
ematical tools have been developed in the course of understanding its dynamics
and finding explicit solutions of the equation. One crucial tool for the study of
the questions is the least action principle: a solution of Hamilton’s equation

xiii

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-10967-4 - Symplectic Topology and Floer Homology: Volume 2:
Floer Homology and its Applications
Yong-Geun Oh
Frontmatter
More information

http://www.cambridge.org/9781107109674
http://www.cambridge.org
http://www.cambridge.org


xiv Preface

corresponds to a critical point of some action functional. In this variational
principle, there are two most important boundary conditions considered for
the equation ẋ = XH(t, x) on a general symplectic manifold: one is the periodic
boundary condition γ(0) = γ(1), and the other is the Lagrangian boundary
condition γ(0) ∈ L0, γ(1) ∈ L1 for a given pair (L0, L1) of two Lagrangian sub-
manifolds. A submanifold i : L ↪→ (M, ω) is called Lagrangian if i∗ω = 0 and
dim L = 1

2 dim M. This replaces the two-point boundary condition in classical
mechanics.

A diffeomorphism φ of a symplectic manifold (M, ω) is called a Hamil-
tonian diffeomorphism if φ is the time-one map of ẋ = XH(t, x) for some
(time-dependent) Hamiltonian H. The set of such diffeomorphisms is denoted
by Ham(M, ω). It forms a subgroup of Symp(M, ω). However, in the author’s
opinion, it is purely a historical accident that Hamiltonian diffeomorphisms
are studied because the definition of Ham(M, ω) is not a priori natural. For
example, it is not a structure group of any geometric structure associated with
the smooth manifold M (or at least not of any structure known as yet), unlike
the case of Symp(M, ω), which is the automorphism group of the symplectic
structure ω. Mathematicians’ interest in Ham(M, ω) is largely motivated by the
celebrated conjecture of Arnol’d (Ar65), and Floer homology was invented by
Floer (Fl88b, Fl89b) in his attempt to prove this conjecture.

Since the advent of Floer homology in the late 1980s, it has played a fun-
damental role in the development of symplectic topology. (There is also the
parallel notion in lower-dimensional topology which is not touched upon in
these two volumes. We recommend for interested readers Floer’s original arti-
cle (Fl88c) and the masterpiece of Kronheimer and Mrowka (KM07) in this
respect.) Owing to the many technicalities involved in its rigorous definition,
especially in the case of Floer homology of Lagrangian intersections (or in the
context of ‘open string’), the subject has been quite inaccessible to beginning
graduate students and researchers coming from other areas of mathematics.
This is partly because there is no existing literature that systematically explains
the problems of symplectic topology, the analytical details and the techniques
involved in applying the machinery embedded in the Floer theory as a whole.
In the meantime, Fukaya’s categorification of Floer homology, i.e., his intro-
duction of an A∞ category into symplectic geometry (now called the Fukaya
category), and Kontsevich’s homological mirror symmetry proposal, followed
by the development of open string theory of D branes in physics, have greatly
enhanced the Floer theory and attracted much attention from other mathe-
maticians and physicists as well as the traditional symplectic geometers and
topologists. In addition, there has also been considerable research into applica-
tions of symplectic ideas to various problems in (area-preserving) dynamical
systems in two dimensions.
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Preface xv

Our hope in writing these two volumes is to remedy the current difficul-
ties to some extent. To achieve this goal, we focus more on the foundational
materials of Floer theory and its applications to various problems arising in
symplectic topology, with which the author is more familiar, and attempt to
provide complete analytic details assuming the reader’s knowledge of basic
elliptic theory of (first-order) partial differential equations, second-year grad-
uate differential geometry and first-year algebraic topology. In addition, we
also try to motivate various constructions appearing in Floer theory from the
historical context of the classical Lagrange–Hamilton variational principle and
Hamiltonian mechanics. The choice of topics included in the book is somewhat
biased, partly due to the limitations of the author’s knowledge and confidence
level, and also due to his attempt to avoid too much overlap with the existing
literature on symplectic topology. We would like to particularly cite the fol-
lowing three monographs among others and compare these two volumes with
them:

(1) J-Holomorphic Curves and Symplectic Topology, McDuff, D., Salamon,
D., 2004.

(2) Fukaya Categories and Picard–Lefschetz Theory, Seidel, P., 2008.
(3) Lagrangian Intersection Floer Theory: Anomaly and Obstruction, vol-

umes I & II, Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K, 2009.

(There is another more recent monograph by Audin and Damian (AD14),
which was originally written in French and then translated into English.)

First of all, Parts 2 and 3 of these two volumes could be regarded as the
prerequisite for graduate students or post-docs to read the book (3) (FOOO09)
in that the off-shell setting of Lagrangian Floer theory in Volume 2 presumes
the presence of non-trivial instantons, or non-constant holomorphic discs or
spheres. However, we largely limit ourselves to the monotone case and avoid
the full-fledged obstruction–deformation theory of Floer homology which
would inevitably involve the theory of A∞-structures and the abstract perturba-
tion theory of virtual moduli technique such as the Kuranishi structure, which
is beyond the scope of these two volumes. Luckily, the books (2) (Se08) and
(3) (FOOO09) cover this important aspect of the theory, so we strongly encour-
age readers to consult them. We also largely avoid any extensive discussion
on the Floer theory of exact Lagrangian submanifolds, except for the cotan-
gent bundle case, because Seidel’s book (Se08) presents an extensive study
of the Floer theory and the Fukaya category in the context of exact symplectic
geometry to which we cannot add anything. There is much overlap of the mate-
rials in Part 2 on the basic pseudoholomorphic curve theory with Chapters 1–6
of the book by McDuff and Salamon (1) (MSa04). However, our exposition
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xvi Preface

of the materials is quite different from that of (MSa04). For example, from
the beginning, we deal with pseudoholomorphic curves of arbitrary genus and
with a boundary and unify the treatment of both closed and open cases, e.g.,
in the regularity theory of weak solutions and in the removal singularity theo-
rem. Also we discuss the transversality issue after that of compactness, which
seems to be more appropriate for accommodating the techniques of Kuranishi
structure and abstract perturbation theory when the readers want to go beyond
the semi-positive case. There are also two other points that we are particularly
keen about in our exposition of pseudoholomorphic curve theory. One is to
make the relevant geometric analysis resemble the style of the more standard
geometric analysis in Riemannian geometry, emphasizing the tensor calcula-
tions via the canonical connection associated with the almost-Kähler property
whenever possible. In this way we derive the relevant Wk,p-coercive estimates,
especially an optimal W2,2-estimate with Neumann boundary condition, by
pure tensor calculations and an application of the Weitzenböck formula. The
other is to make the deformation theory of pseudoholomorphic curves resem-
ble that of holomorphic curves on (integrable) Kähler manifolds. We hope
that this style of exposition will widen the readership beyond the traditional
symplectic geometers to graduate students and researchers from other areas of
mathematics and enable them to more easily access important developments in
symplectic topology and related areas.

Now comes a brief outline of the contents of each part of the two volumes.
The first volume consists of Parts 1 and 2.

Part 1 gives an introduction to symplectic geometry starting from the clas-
sical variational principle of Lagrange and Hamilton in classical mechanics
and introduces the main concepts in symplectic geometry, i.e., Lagrangian
submanifolds, Hamiltonian diffeomorphisms and symplectic fibrations. It also
introduces Hofer’s geometry of Hamiltonian diffeomorphisms. Then the part
ends with the proof of the Gromov–Eliashberg C0-rigidity theorem (El87)
and the introduction to continuous Hamiltonian dynamics and the concept of
Hamiltonian homeomorphisms introduced by Müller and the present author
(OhM07).

Part 2 provides a mostly self-contained exposition of the analysis of pseu-
doholomorphic curves and their moduli spaces. We attempt to provide the
optimal form of a-priori elliptic estimates for the nonlinear Cauchy–Riemann
operator ∂J in the off-shell setting. For this purpose, we emphasize our usage
of the canonical connection of the almost-Kähler manifold (M, ω, J). Another
novelty of our treatment of the analysis is a complete proof of the bound-
ary regularity theorem of weak solutions (in the sense of Ye (Ye94)) of
J-holomorphic curves with totally real boundary conditions. As far as we
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Preface xvii

know, this regularity proof has not been given before in the existing literature.
We also give a complete proof of compactness of the stable map moduli space
following the approach taken by Fukaya and Ono (FOn99). The part ends with
an explanation of how compactness–cobordism analysis of the moduli space
of (perturbed) pseudoholomorphic curves combined with a bit of symplectic
topological data give rise to the proofs of two basic theorems in symplectic
topology; Gromov’s non-squeezing theorem and the nondegeneracy of Hofer’s
norm on Ham(M, ω) (for tame symplectic manifolds).

The second volume consists of Parts 3 and 4. Part 3 gives an introduc-
tion to Lagrangian Floer homology restricted to the special cases of monotone
Lagrangian submanifolds. It starts with an overview of Lagrangian intersection
Floer homology on cotangent bundles and introduces all the main objects of
study that enter into the recent Lagrangian intersection Floer theory without
delving too much into the technical details. Then it explains the compact-
ification of Floer moduli spaces, the details of which are often murky in
the literature. The part ends with the construction of a spectral sequence, a
study of Maslov class obstruction to displaceable Lagrangian submanifolds
and Polterovich’s theorem on the Hofer diameter of Ham(S 2).

Part 4 introduces Hamiltonian Floer homology and explains the complete
construction of spectral invariants and various applications. The applications
include construction of the spectral norm, Usher’s proofs of the minimality
conjecture in the Hofer geometry and the optimal energy–capacity inequal-
ity. In particular, this part contains a complete self-contained exposition of the
Entov–Polterovich construction of spectral quasimorphisms and the associated
symplectic quasi-states. The part ends with further discussion of topologi-
cal Hamiltonian flows and their relation to the geometry of area-preserving
homeomorphisms in two dimensions.

The prerequisites for the reading of these two volumes vary part by part.
A standard first-year graduate differentiable manifold course together with a
little bit of knowledge on the theory of fiber bundles should be enough for
Part 1. However, Part 2, the most technical part of the book, which deals with
the general theory of pseudoholomorphic curves, the moduli spaces thereof
and their stable map compactifications, assumes readers’ knowledge of the
basic language of Riemannian geometry (e.g., that of Volumes 1 and 2 of
Spivak (Spi79)), basic functional analysis (e.g., Sobolev embedding and Reil-
lich compactness and others), elliptic (first-order) partial differential equations
and first-year algebraic topology. The materials in Parts 3 and 4, which deal
with the main topics of Floer homology both in the open and in the closed
string context, rely on the materials of Parts 1 and 2 and should be readable
on their own. Those who are already familiar with basic symplectic geometry
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xviii Preface

and analysis of pseudoholomorphic curves should be able to read Parts 3 and
4 immediately. This book can be used as a graduate textbook for the introduc-
tion to Gromov and Floer’s analytic approach to modern symplectic topology.
Readers who would like to learn more about various deeper aspects of sym-
plectic topology and mirror symmetry are strongly encouraged to read the
books (1)–(3) mentioned above in addition, depending on their interest.

The author would like to end this preface by recalling his personal experi-
ence and perspective, which might not be shared by others, but which he hopes
may help readers to see how the author came up with the current shape of these
two volumes. The concept of symplectic topology emerged from Eliashberg
and Gromov’s celebrated symplectic rigidity theorem. Eliashberg’s original
proof was based on the existence of some C0-type invariant of the symplectic
diffeomorphism which measures the size of domains in the symplectic vec-
tor space. The existence of such an invariant was first established by Gromov
as a corollary of his fundamental non-squeezing theorem that was proven by
using the analytical method of pseudoholomorphic curves. With the advent of
the method of pseudoholomorphic curves developed by Gromov and Floer’s
subsequent invention of elliptic Morse theory that resulted in Floer homology,
the landscape of symplectic geometry changed drastically. Many previously
intractable problems in symplectic geometry were solved by the techniques of
pseudoholomorphic curves, and the concept of symplectic topology gradually
began to take shape.

There are two main factors determining how the author shaped the structure
of the present book. The first concerns how the analytical materials are treated
in Volume 1. The difficulty, or the excitement, associated with the method of
pseudoholomorphic curves at the time of its appearance was that it involves a
mathematical discipline of a nature very different from the type of mathematics
employed by the mainstream symplectic geometers at that time. As a result the
author feels that it created some discontinuity between the symplectic geome-
try before and after Gromov’s paper appeared, and the analysis presented was
given quite differently from how such matters are normally treated by geo-
metric analysts of Riemannian geometry. For example, the usage of tensor
calculations is not emphasized as much as in Riemannian geometry. Besides,
in the author’s personal experience, there were two stumbling blocks hinder-
ing getting into the Gromov–Witten–Floer theory as a graduate student and as
a beginning researcher working in the area of symplectic topology. The first
was the need to get rid of some phobia towards the abstract algebraic geomet-
ric materials like the Deligne–Mumford moduli space Mg,n of stable curves,
and the other was the need to absorb the large amount of analytical materials
that enter into the study of moduli spaces of pseudoholomorphic maps from
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the original sources in the literature of the relevant mathematics whose details
are often too sketchy. It turns out that many of these details are in some sense
standard in the point of view of geometric analysts and can be treated in a more
effective way using the standard tensorial methods of Riemannian geometry.

The second concerns how the Floer theory is presented in the book. In the
author’s personal experience, it seems to be most effective to learn the Floer
theory both in the closed and in the open string context simultaneously. Very
often problems on the Hamiltonian dynamics are solved via the correspond-
ing problems on the geometry of Lagrangian intersections. For this reason, the
author presents the Floer theory of the closed and the open string context at the
same time. While the technical analytic details of pseudoholomorphic curves
are essentially the same for both closed and open string contexts, the relevant
geometries of the moduli space of pseudoholomorphic curves are different
for the closed case and the open case of Riemann surfaces. This difference
makes the Floer theory of Lagrangian intersection very different from that of
Hamiltonian fixed points.
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List of conventions

We follow the conventions of (Oh05c, Oh09a, Oh10) for the definition of
Hamiltonian vector fields and action functionals and others appearing in the
Hamiltonian Floer theory and in the construction of spectral invariants and
Entov–Polterovich Calabi quasimorphisms. They are different from, e.g., those
used in (EnP03, EnP06, EnP09) in one way or another.

(1) The canonical symplectic formω0 on the cotangent bundle T ∗N is given by

ω0 = −dΘ =
n∑

i=1

dqi ∧ dpi,

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-10967-4 - Symplectic Topology and Floer Homology: Volume 2:
Floer Homology and its Applications
Yong-Geun Oh
Frontmatter
More information

http://www.cambridge.org/9781107109674
http://www.cambridge.org
http://www.cambridge.org


Preface xxi

where Θ is the Liouville one-form given by Θ =
∑n

i=1 pi dqi in the canoni-
cal coordinates (q1, . . . , qn, p1, . . . , pn) associated with a coordinate system
(q1, . . . , qn) on N.

(2) The Hamiltonian vector field XH on a symplectic manifold (M, ω) is
defined by dH = ω(XH , ·).

(3) The action functionalAH : L̃0(M)→ R is defined by

AH([γ,w]) = −
∫

w∗ω −
∫ 1

0
H(t, γ(t))dt.

(4) In particular,AH is reduced to the classical Hamilton action functional on
the path space of T ∗N, ∫

γ

p dq −
∫ 1

0
H(t, γ(t))dt,

which coincides with the standard definition in the literature of classical
mechanics.

(5) An almost-complex structure is called J-positive if ω(X, JX) ≥ 0 and
J-compatible if the bilinear form ω(·, J·) defines a Riemannian metric.

(6) Note that R2n 
 Cn carries three canonical bilinear forms: the symplectic
form ω0, the Euclidean inner product g and the Hermitian inner product
〈·, ·〉. We take the Hermitian inner product to be complex linear in the first
argument and anti-complex linear in the second argument. Our convention
for the relation among these three is

〈·, ·〉 = g(·, ·) − iω0(·, ·).

Comparison with the Entov–Polterovich
convention (EnP09)

In (EnP03, EnP06, EnP09), Entov and Polterovich used different sign con-
ventions from the ones in (Oh05c) and the present book. If we compare our
convention with the one from (EnP09), the following is the list of differences.

(1) The canonical symplectic form on T ∗N in their convention is

ω̃0 := dΘ =
n∑

i=1

dpi ∧ dqi.

(2) The definition of the Hamiltonian vector field in (EnP09) is

dH = ω(·, XH).
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xxii Preface

Therefore, by replacing H by −H, one has the same set of closed loops as
the periodic solutions of the corresponding Hamiltonian vector fields on a
given symplectic manifold (M, ω) in both conventions.

(3) Combination of (1) and (2) makes the Hamiltonian vector field associated
with a function H = H(t, q, p) on the cotangent bundle give rise to the
same vector field. In particular, the classical Hamiltonian vector field on
the phase space R2n with canonical coordinates (q1, . . . , qn, p1, . . . , pn) is
given by the expression

XH =

n∑
i=1

(
∂H
∂pi

∂

∂qi
− ∂H
∂qi

∂

∂pi

)
.

(4) For the definition of the action functional (EnP03) and (EnP09) take

−
∫

w∗ω +
∫ 1

0
H(t, γ(t))dt. (0.0.1)

We denote the definition (0.0.1) by ÃH([γ,w]) for the purpose of compar-
ison of the two below.

(5) In particular, ÃH is reduced to

−
∫
γ

p dq +
∫ 1

0
H(t, γ(t))dt

on the path space of T ∗N, which is the negative of the standard definition of
Hamilton’s action functional in the literature of classical mechanics (e.g.,
(Ar89) and (Go80)).

(6) Since these two conventions use the same associated almost-Kähler metric
ω(·, J·), the associated perturbed Cauchy–Riemann equations have exactly
the same form; in particular, they have the same sign in front of the
Hamiltonian vector field.

(7) In addition, Entov and Polterovich (EnP03, EnP06) use the notation
c(a,H) for the spectral numbers, where a is the quantum homology class,
while we use a to denote a quantum cohomology class. The comparison is
the following:

ρ(H; a) = c(a	; H̃) = c(a	; H), (0.0.2)

where a	 is the homology class dual to the cohomology class a and H is
the inverse Hamiltonian of H given by

H(t, x) = −H(t, φt
H(x)). (0.0.3)

(8) The relationship among the three bilinear forms on R2n is given by

〈·, ·〉 = g(·, ·) + iω̃0(·, ·),
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for which the the inner product is complex linear in the second argument
and anti-complex linear in the first argument.

With these understood, one can translate every statement in (EnP03, EnP06)
into ones in terms of our notations.
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