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12

Floer homology on cotangent bundles

In the 1960s, Arnol’d first predicted (Ar65) the existence of Lagrangian inter-
section theory (on the cotangent bundle) as the intersection-theoretic version
of the Morse theory and posed Arnol’d’s conjecture: the geometric intersection
number of the zero section of T ∗N for a compact manifold N is bounded from
below by the one given by the number of critical points provided by the Morse
theory on N. This original version of the conjecture is still open due to the lack
of understanding of the latter Morse-theoretic invariants. However, its coho-
mological version was proven by Hofer (H85) using the direct approach of the
classical variational theory of the action functional. This was inspired by Con-
ley and Zehnder’s earlier proof (CZ83) of Arnol’d’s conjecture on the number
of fixed points of Hamiltonian diffeomorphisms. Around the same time Chap-
eron (Ch84) and Laudenbach and Sikorav (LS85) used the broken geodesic
approximation of the action functional and the method of generating functions
in their proof of the same result. This replaced Hofer’s complicated technical
analytic details by simple more or less standard Morse theory.

The proof published by Chaperon and by Laudenbach and Sikorav is rem-
iniscent of Conley and Zehnder’s proof (CZ83) in that both proofs reduce
the infinite-dimensional problem to a finite-dimensional one. (Laudenbach
and Sikorav’s method of generating functions was further developed by Siko-
rav (Sik87) and then culminated in Viterbo’s theory of generating functions
quadratic at infinity (Vi92).)

In the meantime, Floer introduced in (Fl88b) a general infinite-dimensional
homology theory, now called the Floer homology, which is based on the study
of the moduli space of an elliptic equation of the Cauchy–Riemann type that
occurs as the L2-gradient flow of the action integral associated with the varia-
tional problem. In particular Hofer’s theorem mentioned above is a special case
of Floer’s (Fl88a) (at least up to the orientation problem, which was solved
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4 Floer homology on cotangent bundles

later in (Oh97b)), if we set L0 = φ(oN), L1 = oN in the cotangent bundle.
(Floer’s construction is applicable not only to the action functional in sym-
plectic geometry but also to the various first-order elliptic systems that appear
in low-dimensional topology, e.g., the anti-self-dual Yang–Mills equation and
the Seiberg–Witten monopole equation, and has been a fundamental ingredient
in recent developments in low-dimensional topology as well as in symplectic
topology.)

In (Oh97b), the present author exploits the natural filtration present in
the Floer complex associated with the classical action functional and pro-
vides a Floer-theoretic construction of Viterbo’s invariants. This construction
is partially motivated by Weinstein’s observation that the classical action
functional

AH(γ) =
∫
γ

p dq −
∫ 1

0
H(t, γ(t))dt

is a canonical ‘generating function’ of the Lagrangian submanifold φ1
H(L).

In this chapter we give a brief summary of the Floer theory on cotangent
bundles in which we can illustrate essentially all the aspects of known applica-
tions of Floer homology to symplectic topology, which does not require a study
of the bubbling phenomenon because bubbling does not occur. We postpone
the study of this crucial aspect of the bubbling phenomenon and its technical
underpinning in general to later chapters.

12.1 The action functional as a generating function

We start with the first variation formula (3.4.15) restricted to the case of
cotangent bundles with α = −θ, θ = ∑n

i=1 pi dqi in which the Liouville
one-form

dAH(γ)ξ =
∫ 1

0
ω0(γ̇(t) − XH(t, γ(t)), ξ(t))dt + 〈θ(γ(1)), ξ(1)〉

− 〈θ(γ(0)), ξ(0)〉 (12.1.1)

for γ : [0, 1]→ T ∗N and ξ ∈ Γ(γ∗T (T ∗N)) is a vector field along γ.
A moment’s reflection on this formula gives rise to several important

consequences.
First, we consider the set of paths γ : [0, 1] → T ∗N issued at a point in the

zero section. We denote

Ω(0; oN) = {γ | γ(0) ∈ oN}.
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12.1 The action functional as a generating function 5

There is a natural map πev1 : Ω(0; oN)→ N defined by

π ◦ ev1(γ) = π(γ(1)). (12.1.2)

This defines a fibration of Ω(0; oN) over N whose fiber at q ∈ N is given by

Ω(oN ,T
∗
q N) = {γ | γ(0) ∈ oN , γ(1) ∈ T ∗q N}.

The fiber derivative of AH for πev1 at q is nothing but the first variation of
AH : Ω(oN ,T ∗q N)→ R. This shows that we have

dfiberAH(γ)(ξ) =
∫ 1

0
ω0(γ̇(t) − XH(t, γ(t)), ξ(t))dt

for all ξ ∈ TγΩ(oN ,T ∗q N). Therefore the fiber critical set thereof, denoted by
ΣAH ⊂ Ω(0; oN), is given by the set of solutions of Hamilton’s equation

ẋ = XH(t, x), x(0) ∈ oN , x(1) ∈ T ∗q N.

We note that on ΣAH we have

dAH(γ)(ξ) = 〈γ(1), dπ(ξ(1))〉
from (12.1.1).

Exercise 12.1.1 Complete a formal heuristic argument to derive from this
formula that the push-forward of the one-form dAH(γ) is nothing but γ(1) ∈
T ∗q N.

This completes the heuristic proof of the following proposition, which was
observed by Weinstein.

Proposition 12.1.2 (Weinstein) The pair (AH ,Ω(0; oN)) is a generating
function of φ1

H(oN) in the above sense.

In fact, there is the natural finite-dimensional reduction of this generating
function which we call the basic generating function of LH = φ1

H(oN) and
denote by hH : LH → R. For given x ∈ LH , we denote

zH
x (t) = φt

H((φ1
H)−1(x)),

which is a Hamiltonian trajectory such that

zH
x (0) ∈ oN , zH

x (1) = x (12.1.3)

by definition. We recall the following basic lemmata used in (Oh97b), whose
proofs we leave as an exercise.
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6 Floer homology on cotangent bundles

Lemma 12.1.3 The function hH : LH → R defined by

hH(x) = AH(zH
x ), zH

x (t) = φt
H((φ1

H)−1(x))

satisfies

i∗Hθ = dhH ,

i.e., hH is a generating function of LH. We call hH the basic generating function
of LH.

Exercise 12.1.4 Prove this lemma.

Another consequence of the formula (12.1.1) is the characterization of the
natural boundary conditions for the variational theory of AH . One obvious
natural boundary condition is the periodic boundary condition γ(0) = γ(1). A
more interesting class of natural boundary conditions is the following.

Proposition 12.1.5 Consider the conormal bundle iS : ν∗S ↪→ T ∗N for a
submanifold S ⊂ N. Then i∗S θ = 0.

Proof Let ξ ∈ Tα(T ∗N) and π(α) = x. We have

i∗S θ(ξ) = α(x)(dπ(ξ(α)).

But this pairing vanishes because dπ(ξ(α)) ∈ TxS and α(x) ∈ ν∗xS by definition.
This finishes the proof. �

By this proposition, if we restrict the action functionalAH to the subset

ΩS 0S 1 = Ω(ν∗S 0, ν
∗S 1) = {γ : [0, 1]→ T ∗N | γ(0) ∈ ν∗S 0, γ(1) ∈ ν∗S 1}

the first variation of dAH is reduced to

dAH(γ)(ξ) =
∫ 1

0
ω0(γ̇(t) − XH(t, γ(t)), ξ(t))dt. (12.1.4)

We point out that the path space Ω(oN ,T ∗q N) defined above is a special case of
a conormal boundary condition corresponding to S 0 = N and S 1 = {q}.

An immediate corollary of Proposition 12.1.5 is the following character-
ization of the critical-point equation: dAH |Ω(S 0,S 1)(γ) = 0 if and only if γ
satisfies

γ̇ = XH(t, γ(t)), γ(0) ∈ ν∗S 0, γ(1) ∈ ν∗S 1. (12.1.5)
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12.2 L2-gradient flow of the action functional 7

Definition 12.1.6 (Action spectrum) We define Spec(H; S 0, S 1) to be the set
of critical values and call it the action spectrum ofAH on ΩS 0S 1 , i.e.,

Spec(H; S 0, S 1) = {AH(z) | ż = XH(t, z(t)), z(0) ∈ ν∗S 0, z(1) ∈ ν∗S 1}.

Proposition 12.1.7 The subset Spec(H; S 0, S 1) ⊂ R is compact and has
measure zero.

Proof We have a one-to-one correspondence between the solutions of
(12.1.5) and the intersection

φH1 (ν∗S 0) ∩ ν∗S 1,

as shown in Section 3.1. Clearly this set is compact. On the other hand, the
function from ν∗S 1 to R

h : x �→ zH
x �→ AH(zH

x )

is smooth and hence its image of φH1 (ν∗S 0) ∩ ν∗S 1 is compact.

Exercise 12.1.8 The set of critical points of h coincides with the intersection
set φH1 (ν∗S 0) ∩ ν∗S 1 and the set of critical values of h with Spec(H; S 0, S 1).

Sard’s theorem applied to the smooth function h : ν∗S 1 → R then finishes
the proof. �

We also have the transversality result that φH1 (ν∗S 0) � ν∗S 1 if and only if
the linearization operator of (12.1.5)

∇γ′ − DXH(γ) : ΓS 0S 1 (γ∗(T (T ∗N)))→ Γ(γ∗T (T ∗N)) (12.1.6)

is surjective, where ΓS 0S 1 (γ∗(T (T ∗N))) is the subset of Γ(γ∗T (T ∗N)) defined
by

ΓS 0S 1 (γ∗(T (T ∗N))) = {ξ ∈ Γ(γ∗T (T ∗N)) |
ξ(0) ∈ Tγ(0)(ν

∗S 0), ξ(1) ∈ Tγ(1)(ν
∗S 1)}.

The subset ΓS 0S 1 (γ∗(T (T ∗N))) is also the tangent space TγΩS 0S 1 of ΩS 0S 1 at
γ. This correspondence is the key to the relationship between the dynamics of
Hamilton’s equations and the geometry of Lagrangian intersections.

12.2 L2-gradient flow of the action functional

We first note that, if a Riemannian metric g is given to N, the associated Levi-
Civita connection induces a natural almost-complex structure on T ∗N, which
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8 Floer homology on cotangent bundles

we denote by Jg and call the canonical almost-complex structure (in terms of
the metric g on N).

Definition 12.2.1 Let g be a Riemannian metric on N. The canonical almost
complex structure Jg on T ∗N is defined as follows. Consider the splitting

T(q,p)(T
∗N) = T h

(q,p)(T
∗N) ⊕ T v

(q,p)(T
∗N)

with respect to the Levi-Civita connection of g. For every (q, p) ∈ T ∗N, Jg

maps the horizontal unit tangent vectors to vertical unit vectors.

We will fix the Riemannian metric g on N once and for all. We leave the
proof of the following proposition as an exercise.

Proposition 12.2.2 We have the following.

(1) Jg is compatible with the canonical symplectic structure ω0 of T ∗N.
(2) On the zero section oN ⊂ T ∗N � T(q,0)oN, Jg assigns to each v ∈ TqN ⊂

T(q,0)(T ∗N) the cotangent vector Jg(v) = g(v, ·) ∈ T ∗q N ⊂ T(q,0)(T ∗N). Here
we use the canonical splitting

T(q,0)(T
∗N) � TqN ⊕ T ∗q N.

(3) The metric gJg := ω0(·, Jg·) on T ∗N defines a Riemannian metric that has
bounded curvature and injectivity radius bounded away from 0.

(4) Jg is invariant under the anti-symplectic reflection r : T ∗N → T ∗N
mapping (q, p) �→ (q,−p).

We consider the class of compatible almost-complex structures J on T ∗N
such that

J ≡ Jg outside a compact set in T ∗N,

and denote the class by

Jc := {J | J is compatible to ω and J ≡ Jg

outside a compact subset in T ∗N}.
We define and denote the support of J by

supp J := the closure of {x ∈ T ∗N | J(x) � Jg(x)}.
Define

P(Jc) := C∞([0, 1],Jc) = {J : [0, 1]→ Jc | J = {Jt}0≤t≤1}.
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12.2 L2-gradient flow of the action functional 9

For each given J = {Jt}0≤t≤1, we consider the associated family of compatible
metrics gJt . This family induces an L2-metric on the space of paths on T ∗N
defined by

〈〈ξ1, ξ2〉〉J =
∫ 1

0
gJt (ξ1(t), ξ2(t))dt =

∫ 1

0
ω(ξ1(t), Jt ξ2(t))dt. (12.2.7)

From now on, we will always denote by J a [0, 1]-family of compatible almost-
complex structures unless stated otherwise.

Next we consider Hamiltonians H = H(t, x) such that Ht is asymptotically
constant, i.e., ones whose Hamiltonian vector field XH is compactly supported.
We define

suppasc H = supp XH :=
⋃

t∈[0,1]

supp XHt .

For each given compact set K ⊂ T ∗N and R ∈ R+, we define

HR = PC∞R (T ∗N,R) = {H ∈ C∞([0, 1] × T ∗N,R) | suppasc H ⊂ DR(T ∗N)},
(12.2.8)

which provides a natural filtration of the spaceH . Then we have

H := C∞([0, 1] × T ∗N,R) =
⋃

R

HR

and equip the union ∪RHR with the direct limit topology of {HR}R>0.
If we denote by gradJAH the associated L2-gradient vector field, the formula

for dAH(γ) and (12.1.4) imply that gradJAH has the form

gradJAH(γ)(t) = Jt(γ̇(t) − XH(t, γ(t))), (12.2.9)

which we simply write J(γ̇ − XH(γ)). Therefore the negative gradient flow
equation of a path u : R→ ΩS 0S 1 has the form⎧⎪⎪⎨⎪⎪⎩∂u/∂τ + J

(
∂u/∂t − XH(u)

)
= 0,

u(τ, 0) ∈ ν∗S 0, u(τ, 1) ∈ ν∗S 1,
(12.2.10)

if we regard u as a map u : R × [0, 1]→ M. We call this equation Floer’s per-
turbed Cauchy–Riemann equation or simply the perturbed Cauchy–Riemann
equation associated with the quadruple (H, J; S 0, S 1).

The general Floer theory largely relies on the study of the moduli spaces of
solutions u : R × [0, 1]→ T ∗N with finite energy and of bounded image of the
kind (12.2.10) of perturbed Cauchy–Riemann equations. The relevant energy
function is given by the following definition.
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10 Floer homology on cotangent bundles

Definition 12.2.3 For a given smooth map u : R × [0, 1]→ M, we define the
energy, denoted by E(H,J)(u), of u by

E(H,J)(u) =
1
2

∫ (∣∣∣∣∣∂u
∂τ

∣∣∣∣∣2
Jt

+

∣∣∣∣∣∂u
∂t
− XH(u)

∣∣∣∣∣2
Jt

)
dt dτ.

We denote by

M̃(H, J; S 0, S 1)

the set of bounded finite-energy solutions of (12.2.10) for general H not nec-
essarily nondegenerate. The following lemma is an easy consequence of the
condition of finite energy and bounded image.

Lemma 12.2.4 Suppose that J ∈ P(Jc) and H is any smooth Hamiltonian.
If u satisfies

∂u
∂τ
+ J

(
∂u
∂t
− XH(u)

)
= 0

and has bounded image and finite energy, there exists a sequence τk → ∞
(respectively τk → −∞) such that the path zk := u(τk) = u(τk, ·) converges in
C∞ to a solution z : [0, 1]→ T ∗N of the Hamilton equation ẋ = XH(x).

Proof The proof of this lemma is similar to that of Lemma 11.2.2 and
hence will be brief. Since u satisfies (12.2.10), we have E(H,J)(u) =∫ |∂u/∂t − XH(u)|2Jt

dt dτ < ∞. Therefore there exists a sequence τk → ∞ such
that ∫ 1

0

∣∣∣∣∣∣∂u
∂t

(τk, ·) − XH(u(τ))

∣∣∣∣∣∣
2

Jt

→ 0. (12.2.11)

Denote zk := u(τk, ·). Since u is assumed to have a bounded image, |XH(t, zk(t))|
is uniformly bounded over k. Then this boundedness and (12.2.11) imply that
‖zk‖W1,2 ≤ C, with C independent of k. By Sobolev embedding W1,2 ↪→ Cε

with 0 < ε < 1
2 , zk is pre-compact in Cε and so has a sequence converging

to z∞ in Cε . From the equation żk(t) = XH(t, zk(t)), it follows that żk(t) con-
verges to XH(t, z∞(t)) in Cε . Now, by the same boot-strap argument as that
of Lemma 11.2.2, we derive that zk converges to z∞ in C∞. This finishes the
proof. �

For M̃(H, J; S 0, S 1) to be well-behaved when the parameter (H, J; S 0, S 1)
varies, we need to establish an a-priori energy bound and a C0 bound for
the map u satisfying (12.2.10). For this purpose, we need to impose a certain
tameness of (H, J) at infinity. (We have mentioned the tameness condition on
J before.)
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