INTRODUCTION TO MODEL SPACES AND THEIR OPERATORS

The study of model spaces, the closed invariant subspaces of the backward shift operator, is a vast area of research with connections to complex analysis, operator theory, and functional analysis. This self-contained text is the ideal introduction for newcomers to the field. It sets out the basic ideas and quickly takes the reader through the history of the subject before ending up at the frontier of mathematical analysis. Open questions point to potential areas of future research, offering plenty of inspiration to graduate students wishing to advance further.

Stephan Ramon Garcia is an Associate Professor at Pomona College, California. He has earned multiple NSF research grants and five teaching awards from three different institutions. He has also authored over 60 research articles in operator theory, complex analysis, matrix analysis, and number theory.

Javad Mashreghi is a Professor of Mathematics at Université Laval, Québec, where he has been selected Star Professor of the Year seven times for excellence in teaching. His main fields of interest are complex analysis, operator theory and harmonic analysis. He is the author of several mathematical textbooks, monographs, and research articles. He won the G. de B. Robinson Award, the publication prize of the Canadian Mathematical Society, in 2004.

William T. Ross is the Roger Francis and Mary Saunders Richardson chair in mathematics at the University of Richmond, Virginia. He is the author of over 40 research papers in function theory and operator theory and also four books.
CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS

Editorial Board:
B. Bollobás, W. Fulton, A. Katok, F. Kirwan, P. Sarnak, B. Simon, B. Totaro

All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing visit: www.cambridge.org/mathematics.

Already published

109 H. Geiges An introduction to contact topology
110 J. Faraut Analysis on Lie groups: An introduction
111 E. Park Complex topological K-theory
112 D. W. Stroock Partial differential equations for probabilists
113 A. Kirillov, Jr An introduction to Lie groups and Lie algebras
114 F. Gesztesy et al. Soliton equations and their algebro-geometric solutions, II
115 E. de Faria & W. de Melo Mathematical tools for one-dimensional dynamics
116 D. Applebaum Lévy processes and stochastic calculus (2nd Edition)
117 T. Szamuely Galois groups and fundamental groups
118 G. W. Anderson, A. Guionnet & O. Zeitouni An introduction to random matrices
119 C. Perez-Garcia & W. H. Schikhof Locally convex spaces over non-Archimedean valued fields
120 P. K. Friz & N. B. Victoir Multidimensional stochastic processes as rough paths
121 T. Ceccherini-Silberstein, F. Scarabotti & F. Tolli Representation theory of the symmetric groups
122 S. Kalikow & R. McCutcheon An outline of ergodic theory
123 G. F. Lawler & V. Limic Random walk: A modern introduction
124 K. Lux & H. Pahlings Representations of groups
125 K. S. Pedersen p-adic differential equations
126 R. Beals & R. Wong Special functions
127 E. de Faria & W. de Melo Mathematical aspects of quantum field theory
128 A. Terras Zeta functions of graphs
129 D. Goldfeld & J. Hundley Automorphic representations and L-functions for the general linear group, I
130 D. Goldfeld & J. Hundley Automorphic representations and L-functions for the general linear group, II
131 D. A. Craven The theory of fusion systems
132 J. Väisälä Models and games
133 G. Malle & D. Testerman Linear algebraic groups and finite groups of Lie type
134 P. Li Geometric analysis
135 F. Maggi Sets of finite perimeter and geometric variational problems
136 M. Brodmann & R. Y. Sharp Local cohomology (2nd Edition)
137 C. Muscalu & W. Schlag Classical and multilinear harmonic analysis, I
138 C. Muscalu & W. Schlag Classical and multilinear harmonic analysis, II
139 B. Helser Spectral theory and its applications
140 R. Pemantle & M. C. Wilson Analytic combinatorics in several variables
141 B. Brammer & N. Fagella Quasiconformal surgery in holomorphic dynamics
142 R. M. Dudley Uniform central limit theorems (2nd Edition)
143 T. Leinster Basic category theory
144 I. Arzhantsev, U. Derenthal, J. Hausen & A. Laface Cox rings
145 M. Viana Lectures on Lyapunov exponents
146 J.-H. Evertse & K. Györy Unit equations in Diophantine number theory
147 A. Prasad Representation theory

Cambridge University Press
978-1-107-10874-5 - Introduction to Model Spaces and their Operators
Stephan Ramon Garcia, Javad Mashreghi and William T. Ross
Frontmatter
More information
Introduction to Model Spaces and their Operators

STEPHAN RAMON GARCIA
Pomona College, California

JAVAD MASHREGHI
Université Laval, Quebec

WILLIAM T. ROSS
University of Richmond, Virginia
To our families:
 Gizem; Reyhan, and Altay
 Shahzad; Dorsa, Parisa, and Golsa
 Fiona
Contents

Preface xi
Notation xiv

1 Preliminaries 1
1.1 Measure and integral 1
1.2 Poisson integrals 8
1.3 Hilbert spaces and their operators 22
1.4 Notes 31

2 Inner functions 32
2.1 Disk automorphisms 32
2.2 Bounded analytic functions 33
2.3 Inner functions 36
2.4 Unimodular boundary limits 42
2.5 Angular derivatives 46
2.6 Frostman’s Theorem 52
2.7 Notes 55

3 Hardy spaces 58
3.1 Three approaches to the Hardy space 58
3.2 The Riesz projection 66
3.3 Factorization 67
3.4 A growth estimate 73
3.5 Associated classes of functions 74
3.6 Notes 78
3.7 For further exploration 81
Contents

4 Operators on the Hardy space

4.1 The shift operator 83
4.2 Toeplitz operators 90
4.3 A characterization of Toeplitz operators 93
4.4 The commutant of the shift 96
4.5 The backward shift 99
4.6 Difference quotient operator 100
4.7 Notes 102
4.8 For further exploration 102

5 Model spaces

5.1 Model spaces as invariant subspaces 104
5.2 Stability under conjugate analytic Toeplitz operators 106
5.3 Containment and lattice operations 108
5.4 A decomposition for \mathcal{K}_u 109
5.5 Reproducing kernels 111
5.6 The projection P_u 112
5.7 Finite-dimensional model spaces 115
5.8 Density results 118
5.9 Takenaka–Malmquist–Walsh bases 120
5.10 Notes 121
5.11 For further exploration 124

6 Operators between model spaces

6.1 Littlewood Subordination Principle 126
6.2 Composition operators on model spaces 129
6.3 Unitary maps between model spaces 134
6.4 Multipliers of \mathcal{K}_u 137
6.5 Multipliers between two model spaces 139
6.6 Notes 141
6.7 For further exploration 142

7 Boundary behavior

7.1 Pseudocontinuation 144
7.2 Cyclicity via pseudocontinuation 151
7.3 Analytic continuation 152
7.4 Boundary limits 158
7.5 Notes 167

8 Conjugation

8.1 Abstract conjugations 170
8.2 Conjugation on \mathcal{K}_u 173
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
<td>Inner functions in \mathcal{K}_u</td>
<td>177</td>
</tr>
<tr>
<td>8.4</td>
<td>Generators of \mathcal{K}_u</td>
<td>178</td>
</tr>
<tr>
<td>8.5</td>
<td>Cartesian decomposition</td>
<td>180</td>
</tr>
<tr>
<td>8.6</td>
<td>2×2 inner functions</td>
<td>182</td>
</tr>
<tr>
<td>8.7</td>
<td>Notes</td>
<td>185</td>
</tr>
<tr>
<td>9</td>
<td>The compressed shift</td>
<td>187</td>
</tr>
<tr>
<td>9.1</td>
<td>What is a compression?</td>
<td>187</td>
</tr>
<tr>
<td>9.2</td>
<td>The compressed shift</td>
<td>189</td>
</tr>
<tr>
<td>9.3</td>
<td>Invariant subspaces and cyclic vectors</td>
<td>193</td>
</tr>
<tr>
<td>9.4</td>
<td>The Sz.-Nagy–Foiaş model</td>
<td>195</td>
</tr>
<tr>
<td>9.5</td>
<td>Functional calculus for S_u</td>
<td>197</td>
</tr>
<tr>
<td>9.6</td>
<td>The spectrum of S_u</td>
<td>201</td>
</tr>
<tr>
<td>9.7</td>
<td>The C^*-algebra generated by S_u</td>
<td>206</td>
</tr>
<tr>
<td>9.8</td>
<td>Notes</td>
<td>212</td>
</tr>
<tr>
<td>9.9</td>
<td>For further exploration</td>
<td>213</td>
</tr>
<tr>
<td>10</td>
<td>The commutant lifting theorem</td>
<td>215</td>
</tr>
<tr>
<td>10.1</td>
<td>Minimal isometric dilations</td>
<td>216</td>
</tr>
<tr>
<td>10.2</td>
<td>Existence and uniqueness</td>
<td>217</td>
</tr>
<tr>
<td>10.3</td>
<td>Strong convergence</td>
<td>222</td>
</tr>
<tr>
<td>10.4</td>
<td>An associated partial isometry</td>
<td>223</td>
</tr>
<tr>
<td>10.5</td>
<td>The commutant lifting theorem</td>
<td>224</td>
</tr>
<tr>
<td>10.6</td>
<td>The characterization of ${S_u}'$</td>
<td>229</td>
</tr>
<tr>
<td>10.7</td>
<td>Notes</td>
<td>230</td>
</tr>
<tr>
<td>11</td>
<td>Clark measures</td>
<td>231</td>
</tr>
<tr>
<td>11.1</td>
<td>The family of Clark measures</td>
<td>231</td>
</tr>
<tr>
<td>11.2</td>
<td>The Clark unitary operators</td>
<td>235</td>
</tr>
<tr>
<td>11.3</td>
<td>Spectral representation of the Clark operator</td>
<td>239</td>
</tr>
<tr>
<td>11.4</td>
<td>The Aleksandrov disintegration theorem</td>
<td>245</td>
</tr>
<tr>
<td>11.5</td>
<td>A connection to composition operators</td>
<td>247</td>
</tr>
<tr>
<td>11.6</td>
<td>Carleson measures</td>
<td>250</td>
</tr>
<tr>
<td>11.7</td>
<td>Isometric embeddings</td>
<td>251</td>
</tr>
<tr>
<td>11.8</td>
<td>Notes</td>
<td>256</td>
</tr>
<tr>
<td>11.9</td>
<td>For further exploration</td>
<td>258</td>
</tr>
<tr>
<td>12</td>
<td>Riesz bases</td>
<td>260</td>
</tr>
<tr>
<td>12.1</td>
<td>Minimal sequences</td>
<td>260</td>
</tr>
<tr>
<td>12.2</td>
<td>Uniformly minimal sequences</td>
<td>263</td>
</tr>
<tr>
<td>12.3</td>
<td>Uniformly separated sequences</td>
<td>265</td>
</tr>
<tr>
<td>12.4</td>
<td>The mappings Λ, V, and Γ</td>
<td>268</td>
</tr>
</tbody>
</table>
12.5 Abstract Riesz sequences
12.6 Riesz sequences in \(K_B \)
12.7 Completeness problems
12.8 Notes

13 Truncated Toeplitz operators
13.1 The basics
13.2 A characterization
13.3 \(C \)-symmetric operators
13.4 The spectrum of \(A_\varphi \)
13.5 An operator disintegration formula
13.6 Norm of a truncated Toeplitz operator
13.7 Notes
13.8 For further exploration

References
Index
This is an introductory text on model spaces that is aimed towards both graduate students and active researchers who wish to enter this evolving subject at a comfortable and digestible pace.

Model spaces have been studied, in one form or another, for the past 40 years, making connections to many areas of complex analysis (boundary behavior of analytic functions, analytic continuation, zero sets), operator theory (spectral properties, cyclic vectors, invariant subspaces, model operators for contractions, commutant lifting theorems, Hankel operators), engineering (the Darlington synthesis problem, control theory), and, more recently, to mathematical physics (completeness problems for Schrödinger and Sturm–Liouville operators). The purpose of this book is to present some of the basics of the subject in order to whet the appetite and to provide the newcomer with a solid foundation.

Many of the topics in this book were inspired by several series of lectures given by us at workshops in Montréal, Helsinki, Lens, Rennes, and Kashan where, during the course of these lectures, we became convinced of the need for students and researchers from adjacent fields to have a friendly introduction to model spaces and their operators.

This book is largely self-contained, although the reader is expected to be familiar with the basics of complex analysis, measure theory, and functional analysis. We briefly review these topics to establish our notation and, if necessary, to re-heat some possibly forgotten foundational topics. We develop and prove almost everything else, including a thorough treatment of the fundamentals of Hardy space theory, which is essential to the study of model spaces.

Since the list of topics we plan to cover is readily available in the table of contents, we would like to spend a few moments making the case for model spaces. Why should you keep on reading? Historically, model spaces began...
with the desire to characterize the cyclic vectors and invariant subspaces of the backward shift operator S^* on the Hardy space H^2. Beurling’s 1949 theorem completely characterized the non-trivial invariant subspaces of the unilateral shift $Sf =zf$ on H^2 as uH^2, where u is an inner function on the open unit disk \mathbb{D}. By taking orthogonal complements, we see that the proper invariant subspaces of S^* are the so-called model spaces $K_u = (uH^2)^\perp$. The elements of uH^2 are easy to describe (multiples of the inner function u) while the elements of K_u are hidden behind annihilators and hence are more difficult to characterize. Indeed, which functions actually belong to K_u?

In 1970, Douglas, Shapiro, and Shields linked membership to a model space with certain continuation (analytic and pseudocontinuation) properties of these functions. Around the same time, Ahern and Clark explored the close relationship between the boundary behavior of functions in K_u and the existence of angular derivatives, building upon earlier work of Carathéodory, Frostman, and Riesz.

Some of the most important theorems in operator theory involve modeling a class of abstract operators by concrete operators on familiar spaces. For example, there is the spectral theorem which models normal operators as multiplication operators on Lebesgue spaces. There are other representation theorems for subnormal operators and n-isometries in terms of multiplication operators on certain Hilbert spaces of analytic functions. Pushing this even further, there are the theorems of Sz.-Nagy and Foiaş which model certain types of contractions as the compression of the unilateral shift to a model space. This program was highly successful and gave reasons to broaden the study of model spaces from the scalar-valued case discussed above to the vector-valued case. The discussion was broadened even further with the discovery of the close cousins of the model spaces, the de Branges–Rovnyak spaces.

Sarason, in 1967, identified the commutant of the compressed shift. This result was greatly generalized by Sz.-Nagy and Foiaş to a wider class of operators and became known as the commutant lifting theorem – now regarded as one of the crowning gems of operator theory.

In 1972, Clark discovered a fascinating family of unitary operators whose associated spectral measures are ubiquitous in operator theory, complex analysis, and mathematical physics. These ideas were investigated further by Aleksandrov. Aleksandrov–Clark measures, as they have come to be known, have been used to study composition operators and are proving relevant in harmonic analysis. They also make connections to completeness problems for solutions to Schrödinger and Sturm–Liouville operators.

A seminal article of Sarason from 2008 initiated the study of truncated Toeplitz operators, close relatives of Toeplitz operators whose domains are
model spaces. We discuss some of the foundational results of this evolving field, providing detailed proofs of the key results.

The topics mentioned above, as well as some others, are covered in this book along with all the necessary background material and historical references. Since this is an introduction to model spaces, we cannot cover everything. Although certain topics are missing, the topics that we do cover, we cover in great detail. We do not skimp on the explanations or examples. First and foremost, this book is meant to help the reader learn about model spaces and to become fluent with the fundamental ideas.

Finally, writing good books depends on valuable feedback from your colleagues. In this regard, we would like to thank John B. Conway, John E. McCarthy, Dan Timotin, and Dragan Vukotic for their comments on an earlier draft of this book. We also would like to thank Zachary Glassman for the wonderful drawings and Elizabeth Sarapata for the careful editing.
Notation

\[\mathbb{C} \]
\[\mathbb{C} = \mathbb{C} \cup \{\infty\} \]
\[\mathbb{C}^+ \]
\[\mathbb{C}^- \]
\[\mathbb{N} = \{1, 2, \cdots\} \]
\[\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\} \]
\[\mathbb{D}_e = \{z \in \mathbb{C} : |z| > 1\} \cup \{\infty\} \]
\[\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\} \]
\[A^- \]
\[M(\mathbb{T}) \]
\[M_+(\mathbb{T}) \]
\[m \]
\[D\mu \]
\[L^2 = L^2(\mathbb{T}, m) \]
\[\hat{f}(n) \]
\[\ell^2(\mathbb{Z}), \ell^2(\mathbb{N}) \]
\[P_\mu(\zeta) \]
\[\mathcal{P}_\mu \]
\[\hat{\mu}(n) \]
\[\angle \lim_{\zeta \to \zeta} f(z) \]
\[\mathbb{B}(\mathcal{H}) \]
\[\sigma(A) \]
\[\sigma_p(A) \]
\[x \otimes y \]
\[\sigma_e(A) \]
\[\tau_{\zeta,\alpha} \]
\[H^\infty \]
\[H^2 \]

complex numbers
Riemann sphere
upper half plane
lower half plane
natural numbers
open unit disk
extended exterior disk
unit circle
the closure of \(A \)
finite Borel measures on \(\mathbb{T} \) (p. 1)
positive finite Borel measures on \(\mathbb{T} \) (p. 1)
normalized Lebesgue measure on \(\mathbb{T} \) (p. 1)
symmetric derivative of a measure (p. 2)
standard Lebesgue space (p. 7)
Fourier coefficient of \(f \) (p. 8)
square summable sequences (p. 8)
Poisson kernel (p. 9)

Poisson integral of a measure \(\mu \in M(\mathbb{T}) \) (p. 9)
Fourier coefficient of a measure (p. 10)
non-tangential limit of \(f \) at \(\zeta \) (p. 14)
bounded operators on a Hilbert space \(\mathcal{H} \) (p. 24)
spectrum of an operator \(A \) (p. 25)
point spectrum of an operator \(A \) (p. 25)
a rank one operator (p. 27)
essential spectrum of an operator \(A \) (p. 31)
disk automorphism (p. 32)
bounded analytic functions on \(\mathbb{D} \) (p. 33)
Hardy space (p. 58)

xIV
Notation

c_d(z) = (1 - \bar{z}z)^{-1} \quad \text{reproducing kernel for } H^2 \text{ (p. 59)}
P \quad \text{Riesz projection onto } H^2 \text{ (p. 66)}
S \quad \text{unilateral shift on } H^2 \text{ (p. 83)}
T_\psi \quad \text{Toeplitz operator on } H^2 \text{ (p. 90)}
S^* \quad \text{backward shift on } H^2 \text{ (p. 99)}
\mathcal{K} = (uH^2)^\perp \quad \text{model space (p. 104)}
Q_\lambda \quad \text{difference quotient operator (p. 101)}
k_\lambda(z) = \frac{1 - \bar{u}(\lambda)u(z)}{1 - \lambda z} \quad \text{reproducing kernel for } \mathcal{K} \text{ (p. 111)}
P_u \quad \text{projection onto } \mathcal{K} \text{ (p. 111)}
\mathcal{O}(\mathcal{D}) \quad \text{analytic functions on } \mathcal{D} \text{ (p. 126)}
C_\varphi \quad \text{composition operator (p. 126)}
\sigma(u) \quad \text{spectrum of an inner } u \text{ (p. 152)}
S_u \quad \text{compressed shift (p. 189)}
k_\lambda(z) \quad \text{normalized reproducing kernel for } \mathcal{K} \text{ (p. 208)}
\sigma_\alpha \quad \text{Clark measure (p. 232)}
U_\alpha \quad \text{Clark unitary operator (p. 236)}
A_\varphi \quad \text{truncated Toeplitz operator (p. 282)}
\mathcal{T}_u \quad \text{space of truncated Toeplitz operators on } \mathcal{K} \text{ (p. 283)}