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A Quantum Field Theory of Gravity

Today we know of four kinds of fundamental interactions which seem to underlie

all elementary processes observed in nature. Three of them, the electromagnetic,

the weak, and the strong interactions, are combined in the standard model of

elementary particle physics, which has received striking experimental confirma-

tion during the past decades. Regarded as a classical field theory, the model

employs geometrically natural and mathematically well-understood structures

such as connections of the Yang–Mills type, for example. Furthermore, being

renormalizable in perturbation theory, we also know how the model can be ele-

vated to the level of a perturbatively defined quantum field theory. Beyond this

stage there are ongoing efforts directed toward a non-perturbative definition and

evaluation of at least certain sectors of the theory. Here, modern concepts of sta-

tistical field theory have proven invaluable. They explain, for instance, how the

renormalization properties of the original continuum theory are related to the

behavior of appropriate statistical mechanics models on spacetime lattices when

they approach a second-order phase transition. These insights opened the door

for employing Monte-Carlo simulations as a non-perturbative tool in quantum

field theory, and in particular, as a device to test for the “existence” of a theory

beyond the realm of perturbation theory.

1.1 Renormalizing the Unrenormalizable

As for our theoretical understanding of the fourth of the fundamental interac-

tions, gravity, the situation is markedly different from the other three forces of

nature. With Einstein’s general theory of relativity we have a classical field the-

ory at our disposal which is spectacularly successful in explaining gravitational

phenomena on scales that span many orders of magnitude. However, when we

try to quantize General Relativity (GR) along the same lines as the standard

model, we find that this road is blocked since the theory is non-renormalizable

within perturbation theory [1, 2]. At higher orders of the loop expansion the

www.cambridge.org/9781107107328
www.cambridge.org


Cambridge University Press
978-1-107-10732-8 — Quantum Gravity and the Functional Renormalization Group
Martin Reuter , Frank Saueressig 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 A Quantum Field Theory of Gravity

calculations must cope with an increasing number of new types of divergences

and they all must be absorbed by suitable counter terms. The finite parts of

their coefficients are left undetermined by the theory itself and so they must be

taken from experiment. While this does not exclude the possibility of comput-

ing quantum corrections to predictions of the classical theory, it implies that

those corrections involve an increasing number of undetermined parameters as

the perturbation order is increased.

As long as one restricts attention to a regime where only a few such new cou-

pling constants play a role, quantized General Relativity (GR) has the status of

an effective quantum field theory [3–5]. Similar to chiral perturbation theory [6]

it makes unambiguous predictions for certain leading quantum corrections. With

increasing energy increasingly high loop orders must be included and hence the

predictions unavoidably involve a growing number of undetermined parameters.

At this stage the theory gradually loses its predictive power, and ultimately it

may break down completely. Increasing the order of perturbation theory beyond

this point, would then have the paradoxical consequence of diminishing the the-

ory’s net predictive power as the hoped-for better precision is more than offset

by the new undetermined parameters it introduces.

This loss of predictivity at high-energy or short-distance scales is a strong

motivation to search for a fundamental quantum theory of gravity, i.e., a theory

that is predictive on all scales and that admits potentially large quantum effects.

Ideally this hypothetical theory would contain only a few free parameters whose

values are not fixed by the theory itself. Similar to the familiar situation in

perturbatively renormalizable models it would express all predictions as well-

defined, computable functions of those few measured parameters.

Given that GR is not renormalizable in standard perturbation theory, it has

commonly been argued that a satisfactory microscopic theory of the gravita-

tional interaction cannot be set up within the realm of quantum field theory, at

least not without adding further symmetries, extra dimensions, or new principles

such as holography, for instance. By contrast, the Asymptotic Safety program

retains quantum field theory without such additions to the theoretical arena.

Instead, it abandons the traditional techniques of perturbation theory, the con-

cepts of perturbative renormalization, and of perturbative renormalizability in

particular.

The Asymptotic Safety approach is based on the generalized notion of renor-

malization shaped by Kadanoff and Wilson [7–9] and the use of a “functional”

or “exact” renormalization group (RG) equation. Hence, concepts from modern

statistical field theory play a pivotal role. They provide a unified framework for

approaching the problems with both continuum and discrete methods.

In the new setting one can conceive of non-perturbatively renormalizable

quantum field theories, i.e., models free from physically harmful divergences

that remain predictive up to the highest energies even though they are

non-renormalizable in the perturbative sense.
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1.2 Background Independence 3

The idea that there might exist a non-perturbatively renormalizable, or as he

called it, “asymptotically safe” quantum theory of gravity was first proposed

by S. Weinberg in the late 1970s [10]. At that time no efficient tools to test this

scenario were available. However, an epsilon-expansion valid near two dimensions

indicated that the new path could indeed be viable, at least for an unphysical

dimensionality of spacetime. Further encouragement came from certain matter

field theories that likewise were not renormalizable within perturbation theory

but could be shown to be non-perturbatively renormalizable. In a paper entitled

“Renormalizing the Non-renormalizable,” Gawedzki and Kupiainen [11] used a

1/N -expansion to prove the non-perturbative renormalizability of the Gross–

Neveu model in three dimensions [12, 13].

The systematic exploration of the Asymptotic Safety scenario in four dimen-

sions began only in the 1990s when powerful functional renormalization group

methods became available for the gravitational field [14]. The exposition of

these non-perturbative methods and their use in scrutinizing the viability of

the Asymptotic Safety route to a fundamental quantum field theory of gravity

is the main topic of this book.

1.2 Background Independence

While the various approaches trying to unify the principles of quantum mechan-

ics and General Relativity are based upon rather different physical ideas and are

formulated in correspondingly different mathematical frameworks,1 they all must

cope with the problem of Background Independence in one way or another. What-

ever the ultimate theory of quantum gravity, a central requirement we impose on

it is that it should be Background Independent in the same sense as GR. Loosely

speaking, this means the spacetime structure that is actually realized in nature

should not be part of the theory’s definition but rather arise as a solution to

certain dynamical equations [18–20].

In classical General Relativity the spacetime structure is encoded in a

Lorentzian metric on a smooth manifold, and this metric, via Einstein’s equation,

is a dynamical consequence of the matter present in the universe. In quantum

gravity we would like to retain the fundamental idea that “matter tells space how

to curve, and space tells matter how to move,” but describe both “matter” and

“space” quantum mechanically. While, today, it is fairly well understood how to

set up quantum field theories of matter systems, the open key problem is the

quantum mechanical description of “space.”

In this book we will mostly explore the possibility of constructing a quantum

field theory of gravity in which the spacetime metric carries the dynamical degrees

of freedom which we associate to “space.” Even though this property is taken

1 For reviews of the attempts to obtain a quantum theory of gravitation see, for example,
[15–17].
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4 A Quantum Field Theory of Gravity

from GR, the fundamental dynamics of those metric degrees of freedom is allowed

to be different from that in the classical theory.

The quantum theory of gravity we are searching for will be required to respect

the following principle of Background Independence: In the formulation of the

theory no special metric should play any distinguished role. The actual metric of

spacetime should arise as the expectation value of the quantum field (operator)

ĝµν with respect to some state: gµν = ⟨ĝµν⟩.
This requirement is in sharp contradistinction to the traditional setting of

quantum field theory of matter systems on Minkowski space whose conceptual

foundations heavily rely on the availability of a non-dynamical (rigid) Minkowski

spacetime as a background structure.

The principle of Background Independence2 can be rephrased more precisely

as follows. We require that none of the theory’s basic rules and assumptions,

and none of its predictions, therefore, may depend on any special metric that has

been fixed a priori. All metrics of physical relevance must result from the intrinsic

quantum gravitational dynamics.

A possible objection against this working definition [21] could be as follows: A

theory can be made “Background Independent” in the above sense, but neverthe-

less has a distinguished rigid background if the latter arises as the unique solution

to some field equation which is made part of the “basic rules.” For instance, rather

than introducing a Minkowski background directly one instead imposes the field

equation Rµ
νρσ =0. However, this objection can apply only in a setting where

the dynamics, the field equations, can be chosen freely. In asymptotically safe

gravity this is impossible since, as we shall see, the dynamical laws are dictated

by the fixed-point action. They are thus a prediction rather than an input.

If we try to set up a continuum quantum field theory for the metric itself,

even assuming we are given some plausible candidate for a microscopic dynam-

ics, described by, say, a diffeomorphism invariant bare action functional S, then

already well before one encounters the notorious problems related to the UV

divergences, profound conceptual problems arise. Just to name one, in absence

of a rigid background when the metric is dynamical, there is no preferred time

direction, for instance, hence no notion of equal time commutators, and clearly

the usual rules of quantization cannot be applied straightforwardly.

Many more problems arise when one tries to apply the familiar concepts and

calculational methods of quantum field theory to the metric itself without intro-

ducing a rigid background structure. Some of them are conceptually deep while

others are of a more technical nature.

The problems are particularly severe if one demands that the sought-for

theory can also describe potential phases of gravity in which ⟨ĝµν⟩ is degenerate

2 Here, and in the following, we write “Background Independence” with capital letters when
we refer to this principle rather than simply to the independence of some quantity with
respect to the background field.
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1.2 Background Independence 5

(non-invertible) or completely vanishing in the most extreme case. Interpreting

⟨ĝµν⟩ as an order parameter analogous to the magnetization in a magnetic system,

a non-degenerate classical metric ⟨ĝµν⟩ would signal a spontaneous breaking of

diffeomorphism invariance that leaves only the stability group of ⟨ĝµν⟩ unbroken,
i.e., the Poincaré group for example, when ⟨ĝµν⟩ is given by the Minkowski met-

ric. Conversely, ⟨ĝµν⟩≡ 0 would then be the hallmark of a phase with completely

unbroken diffeomorphism invariance.

The analogy to magnetic systems suggests that this “unbroken phase” is much

easier to deal with than those with ⟨ĝµν⟩ ̸=0. However, in practice this is not the

case, and again the reason is that the traditional toolbox of quantum field theory

as shaped by the requirements of particle or condensed matter physics has very

little to offer as soon as gµν vanishes. The familiar actions for matter fields such

as, say,
∫ √

ggµνDµφDνφ or
∫ √

ggµνgαβFµαFνβ , can no longer be written down

since they require an invertible gµν , and problems of this kind are clearly only

the tip of the iceberg.

A similar difficulty shows up when one tries to conceive an appropriate notion

of a “functional renormalization group” in the realm of quantum gravity. In stan-

dard field theory on a rigid background spacetime typical regularization schemes

(by higher derivative regulators, for example) which are used to make the cal-

culations well defined both in the infrared (IR) and the ultraviolet (UV) make

essential use of the metric provided by this background spacetime. As a result, it

is not obvious whether and how such schemes can carry over to quantum gravity.

This problem is particularly acute for non-perturbative approaches employ-

ing any kind of functional renormalization group equation (FRGE) that would

implement a Wilson-like or “exact” renormalization group flow by a repeated

coarse graining [22–35].

In conventional Euclidean field theory as it is employed in statistical mechanics,

for instance, every such coarse-graining step comes equipped with an associated

length scale. In the case of, say, block-spin transformations it measures the size

of the spacetime blocks within which the microscopic degrees of freedom were

averaged. But when the metric is dynamical and no rigid background is available,

this concept becomes highly problematic since it is not clear in terms of which

metric one should measure the physical, i.e. proper extension of a given spacetime

block.

From a continuum viewpoint, in one way or another all techniques of functional

renormalization involve a mode decomposition of the (field) configurations that

are summed or integrated over in the partition function or functional integral.

In the standard case the modes are often taken to be plane waves, characterized

by a momentum vector pµ. They should be thought of as the eigenfunctions of

the Laplacian δµν∂µ∂ν . These modes are grouped into two classes then, namely

long wavelength (or IR) modes, and short-wavelength (or UV) modes, respec-

tively, depending on whether the Euclidean magnitude of their momentum,

(δµνpµpν)
1/2, is smaller or bigger than a certain value. The short-wavelength
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6 A Quantum Field Theory of Gravity

modes are then “integrated out” and the resulting effective dynamics of the

long-wavelength modes is deduced.

In the absence of an intrinsically given metric comparable to δµν this proce-

dure fails for (at least) the following obvious reasons: There is neither a natural,

physically motivated way of choosing the basis of field modes, nor is it clear

how to discriminate between IR and UV modes and to fix the order in which

the individual modes belonging to some (ad hoc) basis of field modes should be

integrated out.

Thus, the potential danger one faces in applying the ideas of coarse grain-

ing and RG flows to a continuum formulation of gravity is that in the absence

of a naturally provided metric there is a considerable degree of arbitrariness

in the flow that might ruin the power the exact RG has otherwise. After all,

most of its celebrated successes on both the foundational or conceptual side

(understanding the nature of continuum limits, etc.) and the practical side (com-

puting useful effective descriptions of a given fundamental theory) heavily rely

on the rule “short wavelengths first, long wavelengths second” when it comes to

integrating out degrees of freedom. Trivial as it sounds, nothing the like of it

is available in a manifestly Background Independent continuum formulation of

gravity.

1.3 All Backgrounds Is No Background

There are two quite different strategies for complying with the requirement of

Background Independence:

(i) One can try to define the theory and work out its implications without

ever employing a background metric or a similar non-dynamical structure.

This is the path taken in Loop Quantum Gravity [36–39] and the discrete

approaches to quantum gravity [40–48], for instance, where manifest Back-

ground Independence has dramatic consequences for the structure of the

theory [49]. As we saw, it seems very hard, if not impossible, to realize it in

a continuum field theory, however.3

(ii) One takes advantage of an arbitrary classical background metric ḡµν at the

intermediate steps of the quantization, but verifies at the end that no phys-

ical prediction depends on which metric was chosen. This background field

method is at the heart of the continuum-based gravitational average action

approach [14], which we shall employ in our investigation of asymptotic

safety.

3 Some of the difficulties are reminiscent of those encountered in the quantization of topological
Yang–Mills theories. Even when the classical action can be written down without the need
of a metric, the gauge fixing and quantization of the theory usually requires one. Hence, the
only way of proving the topological character of some result is to show its independence of
the metric chosen.
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1.3 All Backgrounds Is No Background 7

The two strategies have complementary advantages and disadvantages. Follow-

ing the path (i), Background Independence is implemented strictly. Hence, it is

manifest at all intermediate steps of the constructions and calculations, but one

must then cope with the above profound difficulties. Taking the path (ii) instead,

Background Independence is not manifest during the intermediate steps and

requires an effort to reestablish it at the end. This strategy has the invaluable

benefit that basically the entire arsenal of general concepts and technical tools

of conventional background-dependent quantum field theory is applicable.

In the simplest variant of the background field method one parameterizes the

quantum metric as ĝµν = ḡµν + ĥµν or a non-linear generalization thereof, and

then quantizes the fluctuation ĥµν in essentially the same way one would quantize

a matter field in a classical spacetime with metric ḡµν . In this way, all of the

conceptual problems alluded to above, in particular the difficulties related to the

construction of regulators, disappear.

Technically the quantization of gravity proceeds then almost as in standard

field theory on a rigid classical spacetime, with one essential difference, though:

In the latter, one concretely fixes the background ḡµν typically as ḡµν = ηµν or as

ḡµν = δµν in the Euclidean case. In “background independent” quantum gravity

instead, the metric ḡµν is never specified concretely. All objects that one has

to compute in this setting, generating functionals, say, are functionals of the

variable ḡµν .

An example is the effective action Γ[hµν ; ḡµν ] that generates the dynamical

equations for the expectation value hµν ≡⟨ĥµν⟩ of ĥµν and its higher n-point

functions. It depends on both the background metric and the fluctuation expecta-

tion value. Similarly all n-point correlation functions of ĥµν which one computes

from it have a parametric dependence on ḡµν . To stress this fact we sometimes

write hµν [ḡ]≡⟨ĥµν⟩ḡ for the 1-point function, for example.

Thus, in a sense, the Background Independent quantization of gravity amounts

to its quantization on all possible backgrounds simultaneously.

There are now two metrics in the game which are equally important: the

background ḡµν and the expectation value of the full metric,

gµν ≡⟨ĝµν⟩= ḡµν + hµν , hµν ≡⟨ĥµν⟩. (1.1)

Alternatively we may regard the effective action as a functional of the two metrics

rather than hµν and ḡµν . We define

Γ[gµν , ḡµν ]≡Γ[hµν ; ḡµν ]
∣∣∣
hµν=gµν−ḡµν

. (1.2)

Because of the almost symmetric status enjoyed by the two metrics we refer to

this setting as the “bi-metric” approach to the Background Independence problem.

As for the notion of an “exact renormalization group” in quantum gravity, we

will introduce the Effective Average Action (EAA) as a scale-dependent version

of the ordinary effective action with a built-in IR cutoff at a variable mass scale
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8 A Quantum Field Theory of Gravity

k and derive in particular a functional RG equation for it. As we will explain in

more detail below, the construction of the EAA and its RG equation are only

possible due to the presence of the classical background spacetime.

Despite the unavoidable bi-metric appearance of the background field method,

the expectation value of the microscopic metric, gµν , and the variable back-

ground metric ḡµν , enter physical quantities (observables) not independently

but instead are constrained by a symmetry requirement. Obviously the full

metric ĝµν ≡ ḡµν + ĥµν is invariant under the split symmetry transformation

δĥµν = εµν , δḡµν =−εµν with an arbitrary symmetric tensor field εµν . At the

quantum level, this transformation implies Ward identities for the n-point func-

tions and the effective (average) action similar to those implied by gauge or

Becchi–Rouet–Stora–Tyutin (BRST) invariance. In either case one must make

sure that in the end the quantum theory constructed actually satisfies these Ward

identities.

In a way, this is the point where one is paying the price for the many advan-

tages the background field technique brings about. However, it will become clear

that while the extra work necessary to implement split symmetry, and thus Back-

ground Independence at the quantum level, is a hard technical challenge, it does

not involve insoluble problems of principle.

1.4 Asymptotic Safety in a Nutshell

In this section we give a concise preview of what Asymptotic Safety is about.

Technical details and refinements are omitted as much as possible. They will be

delivered later on in this book.

(1) The problem. The ultimate goal of the Asymptotic Safety program consists

in giving a mathematically precise meaning to, and actually compute, functional

integrals over “all” spacetime metrics of the form
∫
Dĝµν exp

(
iS[ĝµν ]

)
, or

Z =

∫
Dĝµν e

−S[ĝµν ] , (1.3)

from which all quantities of physical interest can be deduced then. Here S[ĝµν ]

denotes the classical or, more correctly, the bare action. It is required to be dif-

feomorphism invariant, but is kept completely arbitrary otherwise. In general it

differs from the usual Einstein–Hilbert action. This generality is essential in the

Asymptotic Safety program: the viewpoint is that the functional integral would

exist only for a certain class of actions S and the task is to identify this class.

(2) The problem, reformulated. Following the approach proposed in [14] one

attacks this problem in an indirect way: rather than dealing with the integral per

se, one interprets it as the solution of a certain differential equation, a functional

renormalization group equation, or “FRGE”. The advantage is that, contrary to

the functional integral, the FRGE is manifestly well defined. It can be seen as an
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1.4 Asymptotic Safety in a Nutshell 9

“evolution equation” in a mathematical sense, defining an infinite dimensional

dynamical system in which the RG scale plays the role of time.

Loosely speaking, this reformulation replaces the problem of defining functional

integrals by the task of finding evolution histories of the dynamical system that

extend to infinitely late times. According to the Asymptotic Safety conjecture

the dynamical system possesses a fixed point which is approached at late times,

yielding well-defined, fully extended evolutions, which in turn tell us how to con-

struct (or “renormalize”) the functional integral.

(3) From the functional integral to the FRGE. Let us now be slightly more

explicit about the passage from the functional integral to the FRGE.

(3a) Formal character of the integral. Recall that in trying to put the purely

formal functional integrals on a solid basis one is confronted with a number of

obstacles:

(i) As in every field theory, difficulties arise since one tries to quantize infinitely

many degrees of freedom. Therefore, at the intermediate steps of the con-

struction one keeps only finitely many of them by introducing cutoffs at very

small and very large distances, Λ−1 and k−1, respectively. We shall specify

their concrete implementation in a moment. The ultraviolet and infrared

cutoff scales Λ and k, respectively, have the dimension of a mass, and the

original system is recovered for Λ→∞, k→ 0.

(ii) We mentioned already that the most severe problem one encounters when

trying to quantize gravity is the requirement of Background Independence.

In the approach to Asymptotic Safety along the lines of [14] we follow

the spirit of DeWitt’s background field method [50, 51] and introduce a

(classical, non-dynamical) background metric ḡµν , which is kept arbitrary.

We then decompose the integration variable as ĝµν ≡ ḡµν + ĥµν , or a non-

linear generalization thereof, and replace Dĝµν with an integration over

the fluctuation, Dĥµν . In this way one arrives at a conceptually easier task,

namely the quantization of the matter-like field ĥµν in a generic, but classical

background ḡµν .

The availability of the background metric is crucial at various stages of

the construction of an FRGE. However, the final physical results do not

depend on the choice of a specific background.

(iii) As in every gauge theory, the redundancy of gauge-equivalent field config-

urations (diffeomorphic metrics) has to be carefully accounted for. Here

we employ the Faddeev–Popov method and add a gauge-fixing term Sgf ∝∫ √
ḡḡµνFµFν to S where Fµ ≡Fµ(ĥ; ḡ) is chosen such that the condition

Fµ =0 picks a single representative from each gauge orbit. The resulting vol-

ume element on orbit space, the Faddeev–Popov determinant, is expressed

as a functional integral over Grassmannian ghost fields Cµ and C̄µ, governed

by an action Sgh.

www.cambridge.org/9781107107328
www.cambridge.org


Cambridge University Press
978-1-107-10732-8 — Quantum Gravity and the Functional Renormalization Group
Martin Reuter , Frank Saueressig 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 A Quantum Field Theory of Gravity

In this way (1.3) gets replaced by Z̃[Φ̄] =
∫
DΦ̂ exp

(
−Stot[Φ̂, Φ̄]

)
. Here the

total bare action Stot ≡S + Sgf + Sgh depends on the dynamical fields Φ̂≡
(ĥµν , C

µ, C̄µ), the background fields Φ̄≡ (ḡµν), and possibly also on (both dynam-

ical and background) matter fields, which for simplicity are not included here.

(3b) Standard effective action. Using the gauge fixed and regularized inte-

gral we can compute arbitrary (Φ̄-dependent!) expectation values ⟨O(Φ̂)⟩≡
Z̃−1

∫
DΦ̂O(Φ̂) e−Stot[Φ̂,Φ̄]; for instance, n-point functions where O consists

of strings Φ̂(x1)Φ̂(x2) . . . Φ̂(xn). For n=1 we use the notation Φ≡⟨Φ̂⟩≡
(hµν , ξ

µ, ξ̄µ), i.e., the elementary field expectation values are hµν ≡⟨ĥµν⟩, ξµ ≡
⟨Cµ⟩ and ξ̄µ ≡⟨C̄µ⟩. Thus, the full dynamical metric has the expectation value

gµν ≡⟨ĝµν⟩= ḡµν + hµν .

The dynamical laws which govern the expectation value Φ(x) have an elegant

description in terms of the effective action Γ. It is a functional depending on Φ

similar to the classical S[Φ] to which it reduces in the classical limit. Requiring

stationarity, S yields the classical field equation (δS/δΦ)[Φclass] = 0, while Γ gives

rise to a quantum mechanical analog satisfied by the expectation values, the

effective field equation (δΓ/δΦ)[⟨Φ̂⟩] = 0.

If, as in the case at hand, Γ≡Γ[Φ, Φ̄]≡Γ[hµν , ξ
µ, ξ̄µ; ḡµν ] also depends on back-

ground fields, the solutions of this equation inherit this dependence and thus

hµν ≡⟨ĥµν⟩ functionally depends on ḡµν .

Technically, Γ is obtained from a functional integral with Stot replaced by

SJ
tot ≡Stot −

∫
dxJ(x)Φ̂(x). The new term couples the dynamical fields to exter-

nal, classical sources J(x) and repeated functional differentiation (δ/δJ)n of

ln Z̃[J, Φ̄] yields the n-point functions. In particular, Φ= δ ln Z̃/δJ . It is a stan-

dard result that Γ[Φ, Φ̄] equals exactly the Legendre transform of ln Z̃[J, Φ̄], at

fixed background fields Φ̄.

The importance of Γ also resides in the fact that it is the generating functional

of special n-point functions from which all others can be easily reconstructed.

Therefore, finding Γ in a given quantum field theory is often considered equiva-

lent to completely “solving” the theory.

(3c) Notions of gauge invariance. In practical applications of Γ[Φ, Φ̄] it is

advantageous to employ a gauge-breaking condition Fµ that fixes a gauge belong-

ing to the distinguished class of the so-called background gauges. To see the

benefit, recall that the original gauge transformations read δĝµν =Lv ĝµν where

Lv, denotes the Lie derivative with regards to the vector field v.

When we decompose ĝµν = ḡµν + ĥµν we can distribute the gauge variation of

ĝµν in different ways over ḡµν and ĥµν . In particular, this gives rise to what is

known as quantum gauge transformations,

δ
Qĥµν =Lv(ḡµν + ĥµν) , δ

Qḡµν =0 (1.4)
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