Contents

List of figures .. xi
List of tables .. xiii
Acknowledgments .. xv

Part I Introduction .. 1

1 You get what you ask for .. 3
 1.1 The energy we buy .. 4
 1.2 A few guiding principles .. 5
 1.3 Features versus benefits ... 6
 1.4 Where we are headed .. 7
 1.5 Chapter 1 Summary ... 9

Part II Three frameworks ... 11

2 Energy: the product ... 13
 2.1 Energy and power are not equivalent 14
 2.2 The three laws of thermodynamics 16
 2.3 Thermal energy .. 20
 2.4 Controlling factors are often unrelated to energy 21
 2.5 Chapter 2 Summary ... 23

3 Energy: the delivery system .. 24
 3.1 How we consume energy .. 29
 3.2 Generation ... 35
 3.3 Transmission and transportation 44
 3.4 Chapter 3 Summary ... 52
Table of Contents

4 Energy: the value proposition
4.1 The properties of a wicked problem
4.2 The clumsy solution
4.3 Competitive approaches
4.4 Hierarchical approaches
4.5 Egalitarian approaches
4.6 Chapter 4 Summary

Part III Critical decisions

5 The International Niagara Commission of 1891
5.1 The business of generating power
5.2 The International Niagara Commission
5.3 Generation and transmission technologies of 1891
5.4 Received proposals
5.5 No award
5.6 Modern-day lessons
5.7 Chapter 5 Summary

6 Trash as treasure
6.1 The creation of municipal solid waste
6.2 The collection of rubbish
6.3 The treatment of trash
6.4 Prioritization and economics
6.5 Chapter 6 Summary

7 Paying for pavement
7.1 Transportation basics
7.2 Roads: a means to an end
7.3 The pressures on spending priorities
7.4 The erosion of revenue
7.5 Role of taxes
7.6 Energy effects of spending priorities and taxes
7.7 Chapter 7 Summary

8 Heat without the hot air
8.1 Properties of heat

© in this web service Cambridge University Press
www.cambridge.org
Contents

8.2 Transmission constraints 154
8.3 The value proposition of managing risks 158
8.4 Upfront costs to provide energy 162
8.5 What is the value of well-managed heat? 163
8.6 Chapter 8 Summary 165

9 The collision of two critical infrastructures 166
9.1 A centralized grid emerges 167
9.2 A “smarter” grid ... 170
9.3 An introduction to cyber-physical systems 172
9.4 Conflicting values and design criteria 179
9.5 Evolving and disruptive security requirements 181
9.6 Stuxnet and the debunking of ICS/SCADA security myths ... 184
9.7 Chapter 9 Summary 187

Part IV Energy futurism 189

10 Towards better management of energy infrastructures 191
10.1 Complex versus complicated 192
10.2 The future of the grid 197
10.3 Towards open-access transactive energy networks 203
10.4 Chapter 10 Summary 210

11 Risk management in energy 211
11.1 Security and risk .. 213
11.2 Threats ... 221
11.3 Towards operational risk management 229
11.4 Chapter 11 Summary 234

12 Resilience as a core value 236
12.1 Exploring (inter)dependence 237
12.2 Valuing diversity and future freedom of action 238
12.3 Historic US blackouts 245
12.4 India goes dark .. 252
12.5 Chapter 12 Summary 256
Table of Contents

13 Exploring energy security 258
 13.1 Energy and water .. 259
 13.2 Strategic Petroleum Reserve (SPR) 269
 13.3 Fukushima .. 271
 13.4 Integration of the North American power grid 275
 13.5 Electromagnetism and the power grid 276
 13.6 Chapter 13 Summary 283

14 Energy-as-a-service 284
 14.1 Buying electricity today 285
 14.2 Energy products versus energy services 287
 14.3 Making energy visible 292
 14.4 Chapter 14 Summary 305

Part V Societal advancement 307

15 Bringing it all together 309
 15.1 Ages of energy ... 311
 15.2 Putting the present in context 318
 15.3 Earth’s energy future 322
 15.4 The enabler of civilizations 327
 15.5 Still driven by demand 328

References 333
Index 379