
1  Mathematical Techniques

Most natural signals are continuous, but storage and computational devices are digital. 
Thus, for any information processing, the signals need to be converted from continuous to 
discrete domain. The conversion from continuous/analog domain to the discrete/digital 
domain is called sampling. The sampling requirement is guided by the famous Shannon–
Nyquist–Whittaker–Kotelnikov sampling theorem. Plainly speaking the theorem says: 
In order to reconstruct a signal from its sampled measurements, the sampling rate should 
be at least twice the maximum frequency content of the signal.

There are several problems with this approach. The first problem is that the signal is 
assumed to be low-pass, that is, limited by a maximum frequency. However, naturally 
occurring signals are not exactly low-pass. There are two approaches to address this 
discrepancy – the first one is to filter the signal through a low-pass filter; the second 
approach is to sample at a very high rate so that high frequency contents of the signal 
can be captured during sampling. When the signal is artificially made to be low-pass, it 
loses its natural sharpness. It is blurred at the onset; one can only sample and reconstruct 
the blurred signal. The second approach is even more problematic. In order to capture 
high frequency content of the signal, the sampling rate has to increase; requirements for 
such fast sampling challenge the physics of the sampling device. On the other hand, it 
produces a large amount of digital data that is difficult to store and manipulate (one must 
remember that computers are not always available for processing sampled signals). The 
third problem with this approach is that try, however, hard, there will always be some 
high frequency content that will not be captured during the reconstruction process. During 
reconstruction, this leads to Gibb’s phenomenon along sharp signal discontinuities. 

In the previous paragraph, we have discussed the problems pertaining to sampling 
(limitations on the physics of the scanner) and reconstruction (blurry images or Gibb’s 
artifacts). The other problem with Shannon–Nyquist sampling is that it is wasteful. More 
often than not the signal is compressed for ease of storage and retrieval. The compression 
is generally effected via transform coding. Let us take the example of digital photography. 
To compress a digital image, its transform coefficients are computed – the discrete cosine 
transform for use in JPEG or wavelet transform for use in JPEG2000. In transform coding, 
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2  Compressed Sensing for Magnetic Resonance Image Reconstruction

only the transform coefficients that have large values are preserved and  quantized 
and the smaller coefficients are discarded. Since the number of large valued transform 
coefficients is much smaller than the total number of pixels in the image (usually 10% 
or less), the  storage requirements for the quantized transform coefficients are much 
smaller. For  example, a 10 megapixel raw image (from any standard commercial camera 
 manufacturer) is  usually represented by around 12 to 13 megabytes, but a high quality 
JPEG image (virtually indistinguishable from the raw image) would only consume 2 to 
2.5 megabytes – thus effectively compressing the image by 5 to 6 times. Thus, the current 
digital image acquisition and storage is highly wasteful. We acquire a large amount of 
data (raw image) just to discard them later on (using transform coding). This elicits the 
following question: is it possible to acquire much less number of samples (than the full 
resolution of an image) and still be able to reconstruct the image from these samples? 
Compressive sampling (CS) answers this in the affirmative.

The requirement for reducing the number of samples for an MRI arises from a 
slightly different perspective. In MRI, we are interested in the spatial domain signal but 
are sampling in the Fourier (K-space) domain. The spatial field-of-view (FoV) dictates 
the K-space sampling interval. Larger the FoV, denser should be the sampling (smaller 
sampling interval). On the other hand, the resolution in the spatial domain dictates the 
K-space FoV; in order to get high resolution image, the FoV should be larger, that is, more 
high frequency samples need to be sampled. Ideally we require an MRI image that has 
a large spatial FoV as well as of high resolution (large K-space FoV). Meeting these two 
requirements simultaneously is a challenging task. A large spatial FoV demands dense 
sampling (small sampling interval) whereas a high spatial resolution requires increasing 
K-space FoV. Either way, the number of samples required to be collected increases.

The problem with collecting a large number of samples during MRI scan is the increase 
in data acquisition time. Densely sampling the K-space on a regular Cartesian grid is 
time-consuming. This is the reason, MR imaging is slower compared to other popular 
medical imaging modalities. There are several reasons why one would like to accelerate 
the scan by reducing the acquisition time. First, it is a question of patient comfort. It is 
uncomfortable for a patient to remain inside a claustrophobic scanner; to make matters 
worse, MRI scanners generate noise (owing to the gradient being switched on and off in 
the RF coils). Even if we forget about patient comfort, we should be concerned about the 
image quality. Since, MRI acquisition takes time, the patient has to stay in the scanner 
for a considerable period of time. He/she might move in there. Such movement would 
result in motion artifacts in the final image. These are the serious problems that must be 
addressed. Such problems arise in static MRI. The situation worsens for a dynamic MRI. 
In the dynamic MRI, we want to obtain scans with high spatial and temporal resolutions. 
But there is always a trade-off between the two. If one is interested in real-time events in 
dynamic MRI, the temporal resolution needs to be high. In such a case the cost to be paid 
is in terms of spatial resolution.

The challenge today is to reduce MRI acquisition time and accelerate the scan. The data 
acquisition time is reduced if the number of K-space samples collected is less. The question 
is “Is it possible to collect less K-space samples and still be able to reconstruct the image 
fairly accurately?” The answer again is in the affirmative. One has to resort to compressed 
sensing (CS) to understand and implement such reconstructions. 

When the K-space is not fully sampled, the reconstruction problem becomes under- 
determined. Consequently, there is an infinite number of solutions. To get a physically 
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Mathematical Techniques  3

plausible solution, one needs to have some prior information regarding the solution. 
MR  images are known to be locally correlated/redundant. This local correlation is 
exploited by CS techniques to recover the solution. However, CS is not the only solution, 
there are other approaches to solve the under-determined problem. In this chapter, we will 
cover the mathematical topics that will be useful for various MRI reconstruction scenarios.

One way to study the different MRI reconstruction problems is to understand them topic 
wise – static MRI, quantitative MRI, multi-channel MRI, dynamic MRI, and so on. However, 
we will see that the similar techniques are being applied in various scenarios. Therefore, we 
decided to dedicate the first chapter in understanding the various mathematical techniques 
that will feature often in the later chapters. This chapter will broadly cover the topics of sparse 
recovery a.k.a compressed sensing, low-rank matrix completion, and dynamical modeling. 

1.1 Compressed Sensing

1.1.1 Sparse Recovery

Compressed sensing [1], compressive sampling [2], or compressive sensing [3] all  pertain 
to the same field of study; in short this area is referred to as CS in signal processing. 
CS  studies the problem of solving the following inverse problem,

 y A x m nm m n n× × ×= <1 1 ,   (1)

This is an under-determined inverse problem and in general has infinite number of 
solutions. But what if the solution is known to be sparse? By sparse, we mean that the n 
dimensional vector has only s non-zeroes and rest n-s zeroes; we will call such vectors to 
be s-sparse. Is it possible to solve for an s-sparse vector by solving the under-determined 
inverse problem (1)?

Let us try to understand the problem intuitively. In the most favorable scenario, we 
would know the s positions corresponding to the s non-zeroes in x. Let Ω be the set of non-
zero indices. In such a case, solving (1) is the same as solving the following,

 y A x= Ω Ω  (2)

If, s < m, the inverse problem (2) is over-determined and therefore has a unique left 
inverse. Thus, the non-zero positions in x can be obtained by,

 x A A A yT T
Ω Ω Ω Ω= ( )−1

 (3)

Unfortunately, the positions of the non-zero elements in x will not be known in general. 
In such a situation, a brute force technique can be applied to solve (1). We know that the 
solution is s-sparse. Since we do not know Ω, it is possible to choose s elements from n in 
n

sC  ways; thus, there will be n
sC  Ω. What we do is to solve (2) for every such Ω. One can 

see that this is a combinatorial problem. There is no polynomial time algorithm solve (1) 
in such a situation. Hence, it is a non-deterministic polynomial (NP) hard problem. There 
is no technique that is smarter than the brute force method just discussed and all have a 
combinatorial complexity. It is trivial to understand that the number of equation required 
for solving the inverse problem via this technique is m > s. 

In most cases, the number of non-zeroes (s) will not be known; only what is known is 
that the solution will be sparse. It was mathematically shown by David Donoho [4] that 
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4  Compressed Sensing for Magnetic Resonance Image Reconstruction

for most large under-determined system, the sparsest solution is unique, that is, there will 
not be two (or more) sparse solutions satisfying (1). If that be the case, it is not necessary to 
seek an s-sparse solution (s is unknown anyway). What we can do is to seek the sparsest 
solution to (1); mathematically this is posed as 

 min
x

x y Ax0  subject to =  (4)

Strictly speaking, i 0 is not a norm, it only counts the number of non-zeroes in the vector. 
CS theory says that if m > 2s, the solution of the combinatorial optimization problem (4) is 
the unique sparsest solution [5, 6]. Unfortunately, as discussed before, (4) is proven to be 
an NP hard problem [7]. The requirement of having m > 2s can be intuitively understood. 
An s-sparse vector has 2s unknowns – its s positions and the corresponding s values. Thus, 
in order to solve 2s unknowns, at least 2s equations will be needed; thus the requirement 
m > 2s.

Since solving for the sparsest solution is an NP hard problem, it is not feasible for 
practical large scale systems. Is it possible to solve for the sparsest solution via l2-norm 
minimization?

 min
x

x y Ax2  subject to =  (5)

This is the minimum energy solution. The nicest property of (5) is that it has a 
closed-form solution (right inverse). Unfortunately, this will almost never yield the 
sparsest solution. The reason is “because of the minimum energy solution” – the vector 
has minimum energy when its total energy is distributed over all the coefficients of the 
vector. Thus (5) will seek a solution, which is dense as opposed to sparse, but will have 
small values for all the coefficients. 

Between the two extremes of NP hard l0-norm and the smooth l2-norm, lies the convex 
but non-smooth l1-norm. The l1-norm is the tightest convex surrogate to the l0-norm. As it 
turns out, minimizing the l1-norm indeed yields the sparsest solution for a large number 
of problems [1–6, 8],

 min ,
x

i
i

n

x y Ax x x1 1
1

 subject to  = =
=
∑  (6)

The l1-norm prevents diffusion of signal energy into all the coefficients (like l2-norm) 
thereby preserving the requirement of the original problem (4). However, since the l1-norm 
is convex (albeit non-smooth), (6) can be solved via linear programming, which has a 
computational complexity of O(n3). But the price one has to pay in lieu of computational 
complexity is an increase in the number of equations required; whereas it was possible to 
solve (1) via (4) from just m > 2s samples, solving (1) via (6) would require more samples,

 m Cs n> log  (7)

where C is a constant. 
Instead of using an optimization-based approach, we can also use greedy approximate 

algorithms to seek the sparsest solution. Some of the popular greedy algorithms are 
explained in the appendix. 

The reason for the equivalence of l0-l1 norms and the failure of l1-norm can be 
understood geometrically from Figure 1.1. Geometrically the solution of the optimization 
problems, (4), (5), and (6) can be interpreted as points where the lp-ball (p = 0, 1, or 2) 
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Mathematical Techniques  5

touches the hyperplane y = Ax. The l0-ball will touch the hyperplane only at points where 
the solution will be sparse (one of the axis in Fig. 1.1); this is the solution we seek. But 
when we use l2-minimization (5), the solution will be dense, that is, there will be non-zero 
values for all the coefficients in the solution vector. However, with l1-minimization (6), the 
l1-ball will touch the hyperplane only at one of the axis – the same positions as the l0-ball. 
Theoretical insight into the equivalence of l0-l1 norms based on high dimensional geometry 
can be found in Donoho’s work [9].

CS poses conditions on the matrix A so as to guarantee sparse recovery via l1-norm 
minimization. One of the most commonly used conditions is the restricted isometric 
property (RIP) [10]. It says, that l1-norm minimization will guarantee recovery of all 
s-sparse vectors if the following RIP condition holds for every s-sparse vector,

 1 12 2 2−( ) ≤ ≤ +( )δ δv Av v , (8)

where d is a small constant.
The RIP condition demands that every group of s columns chosen from A must be 

approximately orthogonal, that is, will approximately preserve the l2-norm. Checking if 
the RIP condition holds is a combinatorial problem in itself; since one need to check it 
for every n

sC  groups of columns in A. Constructing such matrices deterministically is 
an even harder problem. Fortunately it has been proved that random matrices such as 
i.i.d Gaussian or Bernoulli ensembles or random Fourier ensembles satisfy the RIP with 
high probability. RIP-based recovery was initially used for proving guarantees with 
convex l1-norm minimization. Later RIP-based guarantees have been extended for greedy 
approximate algorithms [10] and non-convex lp-norm minimization [11] as well. The 
problem with greedy algorithms is that they cannot be guaranteed to solve all s-sparse 
solutions; they can recover most, but not all.

Let us briefly discuss about non-convex lp-norm minimization (0 < p ≤ 1). 

 min ,
x p

p
p
p

i
p

i

n

x y Ax x x subject to  = =
=
∑

1

 (9)

‘l2 ball’ ‘l0 ball’ ‘l1 ball’

Correct solution obtained 
via l1 and l0 minimizationy =

 Ax

Incorrect solution obtained
via l2 minimization

Figure 1.1 Geometry of l1-norm minimization.
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6  Compressed Sensing for Magnetic Resonance Image Reconstruction

We know that by l0-norm minimization, we can solve the inverse problem (1) from 
just m > 2s equations; but by l1-norm minimization, we need about m Cs n> log equations. 
Non-convex lp-norm minimization is between l0-norm and l1-norm minimization for 
0 < p ≤ 1. Intuitively it is expected that the number of equations required by lp-norm 
minimization will be intermediate between the two extremes. It was shown in [14], [15] 
that is number of equations required by lp-norm minimization to succeed is

 m C s pC s n> +1 2 log  (10)

Here, C1 and C2 are constants.
As the value of p reduces (p → 0), the requirement (number of equations) reaches that 

of l0-norm minimization.
In real life, the solutions are generally not exactly sparse, they are only approximately 

so. Such signals are also called “compressible.” By approximately sparse/compressible, 
we mean that the signal has a fast decay, that is, the difference between the signal and its 
best s-term approximation x xs−

2
 is small. Moreover, in real life, the system is corrupted 

by noise, therefore, instead of (1) one needs to solve a noisy system of the form, 

 y Ax N= + →η η σ, ( , ) 0 2  (11)

In practical situations, we need to solve for an approximately sparse solution from a 
noisy inverse problem (11). In such a situation, we need to relax the optimization constraint 
and solve the following instead,

 min ,
x p

px y Ax n subject to  − ≤ =
2

2 2ε ε σ  (12)

Let x0  be the true solution, and let x̂  be the solution obtained from solving (12). It has 
been proven (for both the convex [17] and the non-convex case [18]) that the error between 
the true solution and the obtained solution will be bounded by the s-term approximation 
error and the noise level,

 x x C x x C ss0 2 1 0 2 2− ≤ − +ˆ /σ  (13)

Thus, lp-norm minimization guarantees a stable and robust recovery in cases where the 
solution is approximately sparse and the system is noisy. There are standard procedures to 
solve (12) via quadratic programming. 

The problem (12) is called the basis pursuit denoising (BPDN) [18]. It has another 
equivalent form called the LASSO (Least Angle Selection and Shrinkage Operator). The 
LASSO formulation solves the least squares problem, the constraint being on the sparsity 
penalty (lp-norm),

 min
x p

py Ax x− ≤
2

2  subject to τ  (14)

The LASSO formulation was proposed for sparse regression problems [19]. Although the 
two formulations (12) and (14) are equivalent for correct choice of e and t, this formulation 
is not suitable for signal processing problems. This is because, in most cases, we will know 
the noise in the system (know s) but not the sparsity of the solution. In regression (machine 
learning), usually one has some prior idea regarding the sparsity of the solution; therefore, 
for them, solving the LASSO is preferred.

Cambridge University Press
978-1-107-10376-4 - Compressed Sensing for Magnetic Resonance Image Reconstruction
Angshul Majumdar
Excerpt
More information

www.cambridge.org© in this web service Cambridge University Press

http://www.cambridge.org/9781107103764
http://www.cambridge.org
http://www.cambridge.org


Mathematical Techniques  7

There is yet another unconstrained Lagrangian formulation for (12) and (14) given by 
the following quadratic programming problem,

 min
x p

py Ax x−
2

2 +λ  (15)

Here, l is the Lagrangian multiplier. The three forms (12), (14), and (15) are equivalent 
for correct choice of l, t, and e. Unfortunately, the relationship between the three parameters 
is not analytical. Hence, it is not possible to derive one from the other. However, the Pareto 
curve among the three parameters is smooth. If e and t are the two axes for plotting the 
Pareto curve, the l is the tangent to the curve at a given value of x. For a detailed treatise 
on this topic, the reader is referred to [20].

1.1.2 Group-sparse Recovery

The problem is to solve an under-determined system of linear equations. So far we have 
only assumed that the solution is sparse. Nothing else regarding the inter-dependency of 
values and locations of the variables is assumed. If nothing else apart from sparsity of the 
signal is assumed, the number of equations required to solve the problem is m Cs n≥ log  
via l1-norm minimization. The question is “Is it possible to reduce the required number of 
equations even further if dependencies between values and locations of the variables is 
known?” 

The system is under-determined. Intuitively more prior information we have regarding 
the solution, the lesser will be the search space and better will be the solution; in other 
words, lesser will be the number of required equations. The answer to the question is in the 
affirmative and is the subject of model-based CS [21]. This paper addresses different kind 
of structural dependencies. All of them are not relevant to us. We are interested only in the 
topic of group-sparse recovery.

Consider a vector such as x x

x

x x
x

n n1 1 1

1

2 1 2

1

1 2, , , ,... ... ..
� ������ ������ � ������� �������

.. ..., ,x x

x
g g n

g

T

1 1� ������� �������



















. Here 

the whole vector is divided into g groups, each of the groups has ni, (i = 1 … g) variables. 
Each of the groups is represented by xi (i = 1 … g). By group we mean that either all the 
values within a group are zeroes or all of them are non-zeroes; it is not that a few are zeroes 
while the rest are non-zeroes. A group-sparse vector is such that only a few groups (xi’s) 
will be non-zeroes and the rest of them will be zeroes. 

A group-sparse vector can be assumed to be only sparse (ignoring the group structure); 
this is because  the groups are zeroes, the vector will obviously be sparse. But the knowledge 
about the group structure is an extra piece of information. If we know that the solution 
to the under-determined problem (1) is group-sparse, the extra information regarding the 
structure of the sparsity is going to help us (in reducing the number of equations required 
to find the solution). There are only a few theoretical studies in this area [22, 23]. In [22], it 
is proven that the number of equations required for recovering a group-sparse solution is

 m C n C s gj g≥ +1 2max( ) log  (16)

where max(nj) denotes the number of elements in the largest group, sg is the number of 
non-zero groups, and g is the total number of groups. 
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8  Compressed Sensing for Magnetic Resonance Image Reconstruction

It has been analyzed in [22] that group-sparsity is useful when the number of elements 
in the largest group is small compared to the total number of non-zero elements in the 
solution. This condition is named as “strong group-sparsity” in [22]. As we have seen 
before, the number of equations required to solve the problem is intimately related with 
the algorithm used to solve it. For group-sparsity, the aforesaid estimate (16) holds only 
when the solution is recovered via the following optimization problem,

 min ,, ,x
i

i

g

x y Ax x x2 1 2

2
2 1 2

1

 subject to  − ≤ =
=
∑ε  (17)

Here • 2 1,  is a mixed norm. It is the sum of the l2-norms of the groups. The theoretical 
analysis behind using this mixed norm can be found in [23]. Here we explain it intuitively. 
We know that minimizing the l2-norm yields a dense solution; hence, the inner l2-norm 
over the groups ensures that if a group is selected, all its elements should be non-zeroes. 
The sum over l2-norms is similar to group l1-norm – it enforces selection of only a few 
groups. It is easy to verify that if the group information is lost, that is, when each of the 
coefficients constitute a group, the l2,1-norm minimization problem boils down to regular 
l1-norm minimization.

1.1.3 Row-sparse Multiple Measurement Vector Recovery

In sparse recovery, the problem is to recover a sparse vector from its noisy lower dimensional 
projections (11).

 y Ax= +η  

This is the single measurement vector (SMV) problem. In a multiple measurement 
vector (MMV) problem, multiple vectors are projected onto a lower dimensional subspace 
by the same projection matrix, that is,

 y Ax j Nj j( ) ( ) , ...= + =η  1  (18)

In a compact matrix–vector notation, this is represented as,

 Y AX Y y y X x xN N= + = =η , [ |...| ] [ |...| ]( ) ( ) ( ) ( )  and 1 1  (19)

The problem is to recover the matrix X given Y and A. Compressed Sensing asks the 
question: “If we know that all the x(j)’s have a common sparse support, how do we recover 
X?”. In other words, we have to recover X knowing that the matrix is row-sparse, that is, 
there are only a few rows that are non-zeroes and the rest are zeroes. This is the row-sparse 
MMV recovery problem.

The recovery is formulated as the following mixed-norm optimization problem:

 min ,, ,X F
i

i

n

X Y AX X X2 1
2

2 1 2
1

 subject to  − ≤ = →

=
∑ε  (20)

where • →i

2 1,
 denotes the ith row.

There are several papers [24, 25] that studied this problem. For theoretical guarantees, 
the reader is referred to the aforesaid works. However, the intuition behind using the 
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Mathematical Techniques  9

mixed norm is the same as before (group-sparsity). The l2-norm over the rows enforces 
the selected rows to have non-zero values for all the elements; the sum over the l2-norms 
promotes selection of only a few rows.

The problems of group-sparse recovery and row-sparse MMV recovery are somewhat 
related. More specifically, the latter can be recast as the former. This follows from the simple 
Kronecker product; the MMV problem can be recast in the following Kronecker product 
notation,
 vec( vec vec(Y I A X) ( ) )= ⊗ + η  (21)

Here, I A⊗  is a block diagonal matrix with A in each block and vec(X) is formed by 

column concatenation of the matrix X, that is, vec  ( ) , ...,( ) ( ) ( )X x x xT T
N

T T
=  1 2 . Without loss of 

generality, we can assume vec(X) to be constituted of n groups, each group corresponding 

to a row in X, that is, vec  ( ) , ...,X X X Xn T
=  

→ → →1 2 . As the matrix X is row-sparse, the 

vector vec(X) will be group-sparse. There lies the similarity between group-sparse recover 

and row-sparse MMV recovery. This also explains the similarity between the mixed norm 
minimization problems (17) and (20).

1.1.4 Synthesis and Analysis Priors

Till now we have been living in the “Sparseland.” The solution itself was assumed to be 
sparse. However, for most natural systems, the solution is not sparse in itself; but most 
natural signals are sparse in a transform domain, for example, seismic images are sparse 
in curvelets, medical images are sparse in wavelets, EEG is sparse in Gabor transform, and 
speech is sparse in short time Fourier transform. Practical applications of CS exploit the 
transform domain sparsity of such signals. 

Linear transforms that are orthogonal or are tight-framed are the best for us. For readers 
those who are not aware of the difference between the two, the simple distinction is

 Orthogonal: Ψ Ψ ΨΨT TI= =  (21a)

 Tight frame: Ψ Ψ ΨΨT TI= ≠  (21b)

Both the orthogonal and tight-frame transforms have a left-inverse, but only 
orthogonal transforms have a right-inverse. In other words, for both the orthogonal and 
tight-frame transforms, the forward transform followed by the backward transform is 
identity, but the reverse (backward followed by forward resulting in identity) only holds 
true for orthogonal transforms but not tight-frames. 

The property that makes orthogonal and tight-frame transforms useful to us are the 
analysis (forward) and synthesis (inverse) equations (holds true for both):

 Analysis:  α = Ψx  (22a)

 Synthesis:  x T= Ψ α  (22b)

Inverse problems that are not sparse by themselves, but are known to be sparse in an 
orthogonal/tight-frame domain can be framed as follows:

 y Ax A T= + =η α ηΨ  +  (23)
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10  Compressed Sensing for Magnetic Resonance Image Reconstruction

Here, x is not sparse but a is. Thus, the solution is obtained via the following equation,

 min
α

α α ε1 2

2
 subject to y A T− ≤Ψ  (24)

Once the sparse transform coefficient vector is solved, the required solution x is obtained 
via applying the synthesis equation (22b).

This is the synthesis prior model. More than 90% of CS applications are based on 
the synthesis prior model. This problem is well understood theoretically and there are 
well known algorithms to solve this problem. However, this model is restrictive owing 
to the stringent requirements of orthogonality/tight-frame property. Sometimes signals 
are modeled to be piecewise smooth (e.g., magnetic resonance images); such signals can 
have a sparse gradient. Since finite differencing is used for computing the gradient, the 
signal is also said to be sparse in finite differencing domain (D). Unfortunately, finite 
differencing do not follow the analysis and synthesis equations (α = Dx  is sparse but 
x DT≠ α ), thus it is not possible to frame the inverse problem as (23) and hence, it is not 
possible to solve for x using (24). There are learned dictionaries that are empirical learned 
basis for sparsely representing certain signals. In such cases, the analysis equation leads 
to a sparse transform coefficient vector but the synthesis equation is not an inverse for the 
learned dictionary. Such cases necessitate the following analysis prior model:

 min
x

Dx y Ax1 2

2 subject to − ≤ ε  (25)

At the onset we make clear that for orthogonal transforms, the synthesis and the 
analysis priors are the same, but for tight-frames, they are different. This follows 
 trivially. For orthogonal transforms, the synthesis prior model (24) can be expressed as 

min
α

α α εΨΨ ΨT Ty A
1 2

2
 subject to − ≤ ; this is nothing but the analysis prior model 

min
x

x y AxΨ 1 2

2 subject to − ≤ ε . However, for tight-frame transforms, this formulation 

is not possible because ΨΨT I≠ .
The analysis prior model is more generalized. The synthesis prior model can be cast 

as an analysis prior but not the other way round. Unfortunately, the analysis prior model 
has not been studied extensively. It is only in the last few years that people have started 
theoretically analyzing this model. The simple difference between the synthesis and the 
analysis prior models is that the former solves for the transform coefficients of the solution 
while the latter solves for the solution itself. Digging a little deeper, the difference between 
the two models is in the emphasis – the synthesis prior model seeks a solution that has 
very few non-zeroes while the analysis prior seeks a solution that has many zeroes; the 
synthesis prior seeks a sparse signal while the analysis prior seeks a co-sparse signal [27]. 

For understanding the rest of the book, it is not required to dig any further into the 
sparse synthesis prior and the co-sparse analysis prior models. Remembering the reasons 
for synthesis and analysis prior modeling is good enough for this book. For a better 
theoretical understanding of the topic, we ask the reader to refer [27], [28]. 

1.2 Low-rank Matrix Recovery

In the previous section, we learned the basics of CS theory. The idea of CS germinated 
from transform coding. Transform coding is the de facto standard for all kinds of lossy 
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