Dimensions of Phonological Stress

Stress and accent are central, organizing features of grammar, but their precise nature continues to be a source of mystery and wonder. These issues come to the forefront in acquisition, where the tension between the abstract mental representations and the concrete physical manifestations of stress and accent is deeply reflected. Understanding the nature of the representations of stress and accent patterns, and understanding how stress and accent patterns are learned, informs all aspects of linguistic theory and language acquisition. These two themes – representation and acquisition – form the organizational backbone of this book. Each is addressed along different dimensions of stress and accent, including the position of an accent or stress within various prosodic domains and the acoustic dimensions along which the pronunciation of stress and accent may vary. The research presented in the book is multidisciplinary, encompassing theoretical linguistics, speech science, and computational and experimental research.

JEFFREY HEINZ (PhD 2007, University of California, Los Angeles) is professor at the University of Delaware. He conducts research at the intersection of theoretical linguistics, theoretical computer science, and computational learning theory. With Rob Goedemans and Harry van der Hulst, he helped develop the StressTyp2 database, which organizes and presents information on the stress and accent patterns in hundreds of languages around the world.

ROB GOEDEMANS (PhD 1998, Leiden University, the Netherlands) conducts research regarding the phonetics, phonology, and typology of stress in the languages of the world in general, and the languages of Aboriginal Australia and Indonesia in particular. Together with Harry van der Hulst, he has worked on several publications based on the StressTyp database, with which he has been involved since its inception. Currently, Rob is employed in the departments of Communications and Information Management at the Humanities Faculty of Leiden University.

HARRY VAN DER HULST (PhD 1984, Leiden University, the Netherlands) specializes in ‘phonology’, which is the study of the sounds systems of languages, as well as the visual aspects of sign languages. He has published twenty-five books and more than 130 articles. He has held (guest) positions at Leiden University, the University of Salzburg, the University of Girona, Skidmore College, New York University, and Cornell University. He has been Editor-in-Chief of the international linguistic journal The Linguistic Review since 1990. He is currently (since 2000) professor of linguistics at the University of Connecticut.
Dimensions of Phonological Stress

Jeffrey Heinz
University of Delaware

Rob Goedemans
Leiden University

Harry van der Hulst
University of Connecticut
Contents

<table>
<thead>
<tr>
<th>List of Figures</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>ix</td>
</tr>
<tr>
<td>List of Contributors</td>
<td>xi</td>
</tr>
</tbody>
</table>

Introduction

1. Metrical Incoherence: Diachronic Sources and Synchronic Analysis
 Matthew Gordon
 9

2. The Role of Phenomenal Accent
 Brett Hyde
 49

3. Foot Alignment in Spanish Secondary Stress
 Eugene Buckley
 79

4. The Interaction of Metrical Structure and Tone in Standard Chinese
 Yanyan Sui
 101

5. Prominence, Contrast, and the Functional Load Hypothesis:
 An Acoustic Investigation
 Irene Vogel, Angeliki Athanasopoulou, and Nadya Pincus
 123

6. Iquito: The Prosodic Colon and Evaluation of OT Stress Accounts
 Nina Topintzi
 168

7. Investigating the Efficiency of Parsing Strategies for the
 Gradual Learning Algorithm
 Gaja Jarosz
 201

8. Covert Representations, Contrast, and the Acquisition of
 Lexical Accent
 B. Elan Dresher
 231

9. One or Many? In Search of the Default Stress in Greek
 Anthi Revithiadou and Angelos Lengeris
 263
vi Contents

10 The Development of Rhythmic Preferences by Dutch-learning Infants 291
 BRIGITTA KEIJ AND RENÉ KAGER

11 Acoustic Characteristics of Infant-directed Speech as a Function of Prosodic Typology 311
 YUANYUAN WANG, AMANDA SEIDL, AND ALEJANDRINA CRISTIA

Index 327
Figures

4.1 The F0 patterns of disyllabic words in different utterance positions.

4.2 The F0 patterns of utterance-medial trisyllabic words.

4.3 The F0 patterns of utterance-medial quadrisyllabic words.

4.4 The F0 patterns of utterance-medial phonetic borrowings.

4.5 The Left-strong prominence judgment of disyllabic words by tone, adapted from Deng (2010:63, Table 4.1).

4.6 The Right-strong prominence judgment of disyllabic words by tone, adapted from Deng (2010:63, Table 4.1).

5.1 Turkish dialogue slides corresponding to the constructions in (7a) and (7b).

5.2 Spanish: duration of stressed and unstressed vowels in focused and non-focused positions.

5.3 Spanish: mean F0 of stressed and unstressed vowels in focused and non-focused positions.

5.4 Spanish: F0 contour of stressed and unstressed vowels in focused and non-focused positions.

5.5 Greek: mean F0 of stressed and unstressed vowels in focused and non-focused positions.

5.6 Greek: F0 contour of stressed and unstressed vowels in focused and non-focused positions.

5.7 Greek: duration of stressed and unstressed vowels in focused and non-focused positions.

5.8 Hungarian: mean F0 of stressed and unstressed vowels in focused and non-focused positions.

5.9 Hungarian: F0 contour of stressed and unstressed vowels in focused and non-focused positions.

5.10 Hungarian: duration of stressed and unstressed vowels in focused and non-focused positions (short vs. long vowels).

5.11 Turkish: mean intensity of unstressed and stressed vowels in focused and non-focused positions (canonical [final] stress).
5.12 Turkish: duration of unstressed and stressed vowels in focused and non-focused positions (canonical [final] stress). 154
5.13 Turkish: mean F0 of unstressed and stressed vowels in focused and non-focused positions (canonical [final] stress). 154
5.14 Turkish: F0 contour of unstressed and stressed vowels in focused and non-focused positions (canonical [final] stress). 155
7.1 Success rate of random OT baseline versus OT-GLA over time. 217
7.2 Success rate of random HG baseline versus HG-GLA over time. 218
7.3 Average word accuracy of OT-GLA and HG-GLA over time. 222
9.1 Original PsW (/kléto/) with stress on first syllable. 269
9.2 Manipulated PsW (/kléto/) used in Experiment 1 with both syllables stressed. 269
9.3 Manipulated PsW (/kleto/) used in Experiment 2 with both syllables unstressed. 270
9.4 Percentage stress detection in 2σ PsWs in Experiment 1. 271
9.5 Percentage stress detection in 3σ PsWs in Experiment 1. 271
9.6 Percentage stress detection in 2σ PsWs in Experiment 2. 272
9.7 Percentage stress detection in 3σ PsWs in Experiment 2. 272
9.8 Percentage stress detection in 2σ PsWs in Experiment 1. 273
9.9 Percentage stress detection in 3σ PsWs in Experiment 1. 274
9.10 Percentage stress detection in 2σ PsWs in Experiment 2. 275
9.11 Percentage stress detection in 3σ PsWs in Experiment 2. 275
9.12 Percentage stress occurrence in 2σ nouns in the Lexicon (reproduced from Apostolouda 2012:50–51). 277
9.13 Percentage stress occurrence in 3σ nouns in the Lexicon (reproduced from Apostolouda 2012:50–51). 278
10.1 The outline of the central fixation auditory preference experiment using eye tracking. 300
10.2 The mean TLT for all Dutch-learning infants per condition (SW vs. WS). 302
10.3 The mean TLT per age group (4-, 6-, 8-month-olds) per condition (SW vs. WS). 303
10.4 The distribution of individual preferences (SW, WS, or none) by age in days and per age group. 304
10.5 The basic preference curve as described by Hunter & Ames (1988). 306
10.6 The preference development for all three age groups plotted as the difference between the mean TLTs during the WS-condition minus the SW-condition per trial pair. 307
Tables

4.1 F0 in disyllabic words in different utterance positions 112
4.2 F0 in utterance-medial trisyllabic words 114
4.3 F0 in quadrisyllabic words 116
4.4 F0 in utterance-medial pentasyllabic words 118
5.1 Spanish LRA (Stress): classification of stressed versus unstressed vowels in non-focus and focus positions 138
5.2 Spanish LRA (Focus): classification of focused versus non-focused vowels in unstressed and stressed syllables 138
5.3 Greek LRA (Stress): classification of stressed versus unstressed vowels in non-focus and focus positions 142
5.4 Greek LRA (Focus): classification of focused versus non-focused vowels in unstressed and stressed syllables 143
5.5 Hungarian LRA (Stress): classification of stressed versus unstressed vowels in non-focus and focus positions (short and long vowels combined) 146
5.6 Hungarian LRA (Stress): classification of stressed versus unstressed vowels in non-focus and focus positions (short vowels vs. long vowels) 147
5.7 Hungarian LRA (Focus): classification of focused versus non-focused vowels in unstressed and stressed syllables (short and long vowels combined) 147
5.8 Hungarian LRA (Focus): classification of focused versus non-focused vowels in unstressed and stressed syllables (short vowels vs. long vowels) 147
5.9 Turkish LRA (Stress): classification of stressed versus unstressed vowels in non-focus and focus positions (penultimate syllable – all vowels, /a/; final syllable – /a/) 151
5.10 Turkish LRA (Focus): classification of focused versus non-focused vowels in the penultimate syllable (all vowels, /a/) and in the final syllable (/a/) 151
Tables

5.11 Turkish LRA (Stress): classification of stressed versus unstressed vowels in non-focus and focus positions (canonical stress pattern) 151

5.12 Turkish LRA (Focus): classification of focused versus non-focused vowels in unstressed and stressed syllables (canonical stress pattern) 152

5.13 Functional Load Hypothesis – confirmation of specific hypotheses in Greek, Hungarian, Spanish, Turkish 156

10.1 Included and total number of infants tested per age group with mean age and age range in days 297

10.2 The average values over 24 tokens for duration, mean pitch, and mean intensity of the rhyme part of the stressed and unstressed syllables with their standard deviation (SD) 298

10.3 The mean TLT per Dutch age group (4-, 6-, 8-month-olds) per condition (SW vs. WS) 302
Contributors

ANGELIKI ATHANASOPOULOU, University of Delaware
EUGENE BUCKLEY, University of Pennsylvania
ALEJANDRINA CRISTIA, Centre National de la Recherche Scientifique
B. ELAN DRESHER, University of Toronto
MATTHEW GORDON, University of California, Santa Barbara
BRETT HYDE, Washington University
GAJA JAROSZ, University of Massachusetts Amherst
RENÉ KAGER, Utrecht University
BRIGITTA KEIJ, Utrecht University
ANGELOS LENGERIS, University of Kent
NADYA PINCUS, University of Delaware
ANTHI REVITHIAIDOU, Aristotle University of Thessaloniki
AMANDA SEIDL, Purdue University
YANYAN SUI, Nankai University
NINA TOPINTZI, Aristotle University of Thessaloniki
IRENE VOGEL, University of Delaware
YUANYUAN WANG, Purdue University