
Cambridge University Press
978-1-107-10213-2 — Bayesian Astrophysics
Edited by Andrés Asensio Ramos , Íñigo Arregui
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1 Bayesian Inference and Computation:
A Beginner’s Guide

BRENDON J. BREWER

1.1 Introduction

Most scientific observations are not sufficient to give us definite answers to all our
questions. It is rare that we get a dataset which totally answers every question with
certainty. Even if that did happen, we would quickly move on to other questions. What
a dataset usually can do is make hypotheses more or less plausible, even if we do not
achieve total certainty. Bayesian inference is a model of this reasoning process, and also a
tool we can use to make quantitative statements about how much uncertainty we should
have about our conclusions. This takes the mystery out of data analysis, because we no
longer have to come up with a new method every time we face a new problem. Instead,
we simply specify exactly what information we are going to use, and then compute the
results. In the last 2 decades, Bayesian inference has become immensely popular in many
fields of science, and astrophysics is no exception. Therefore it is becoming increasingly
important for researchers to have at least a basic understanding of these methods.
Accessible textbooks for those with a physics background include those by Gregory

(2005) and Sivia and Skilling (2006), and parts of the textbook by MacKay (2003).1 The
online tutorial by Vanderplas is also useful.2 For those with a strong statistics background,
I recommend the books by O’Hagan and Forster (2004) and Gelman et al. (2013). I also
maintain a set of lecture notes for an undergraduate Bayesian statistics course.3 The aim
of this chapter is to present a fairly minimal yet widely applicable set of techniques to
allow you to start using Bayesian inference in your own research.
Any particular application of Bayesian inference involves making choices about what

data you are analysing, what questions you are trying to answer, and what assumptions
you are willing to make. Data analysis problems in astronomy vary widely, so in this
chapter we cannot cover a huge variety of examples. Instead, we only study a single
example, but spend a lot of time looking at the methods and thinking that go into such
an analysis, which will be applicable in other examples. The specific assumptions we make
in the example will not always be appropriate, but they should be sufficient to show you
the points at which assumptions are needed, and what you need to consider when you
work on a particular problem.
In principle, it is usually best to work with your data in the most raw form possible,

although this is often too difficult in practice. Therefore, most scientists work with
data that has been processed (by a ‘pipeline’) and reduced to a manageable size. While
many Bayesian practitioners often have strong ideals about data analysis, a large dose of
pragmatism is still very necessary in the real world.
To do Bayesian inference, you need to specify what prior information you have (or

are willing to assume) about the problem, in addition to the data. Prior information is
necessary; what you can learn from a dataset depends on what you know about how it
was produced. Once you have your data, and have specified your prior information, you

1 The MacKay text is freely available online at www.inference.phy.cam.ac.uk/itila.
2 Available online at jakevdp.github.io/blog/2014/03/11/frequentism-and-bayesianism-a-
practical-intro.

3 Available at www.github.com/eggplantbren/STATS331.

1

www.cambridge.org/9781107102132
www.cambridge.org

Cambridge University Press
978-1-107-10213-2 — Bayesian Astrophysics
Edited by Andrés Asensio Ramos , Íñigo Arregui
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 Brendon J. Brewer

are faced with the question of how to calculate the results. Usually you want to calculate
the posterior distribution for some unknown quantities (also known as ‘parameters’) given
your data. This posterior distribution describes your uncertainty about the parameters,
but takes the data into account.
Since we are often dealing with (potentially) complicated probability distributions in

high-dimensional spaces, we need to summarise the posterior distribution in an under-
standable way. In certain problems, the summaries can be calculated analytically, but
numerical methods are more general, so are the focus of this chapter. The most popular
and useful numerical techniques are the Markov Chain Monte Carlo methods, often
abbreviated as MCMC.4 The rediscovery of MCMC in the 1990s is one of the main reasons
why Bayesian inference is so popular now. While there were many strong philosophical
arguments in favour of a Bayesian approach before then, many people were uncomfortable
with the subjective elements involved. However, once MCMC made it easy to compute
the consequences of Bayesian models more easily, people simply became more relaxed
about these subjective elements.
A large number of MCMC methods exist, and it would be unwise to try to cover

them all here. Therefore I focus on a small number of methods that are relatively simple
to implement, yet quite powerful and widely applicable. I try to emphasise methods
that are general, i.e. methods that work on most problems you might encounter. One
disadvantage of this approach is that the methods we cover are not necessarily the
most efficient methods possible. If you are mostly interested in one specific application,
you will probably be able to achieve better performance by using a more sophisticated
algorithm, or by taking advantage of the particular properties of your problem. There are
many popular software packages (and many more unpopular ones) available for Bayesian
inference, such as JAGS (Just Another Gibbs Sampler), Stan, emcee, MultiNest, my own
DNest4, and many more. Please see the appendix for a brief discussion of the advantages
and disadvantages of some of these packages.

1.2 Python

Due to its popularity and relatively shallow learning curve, I have implemented the
algorithms in this chapter in the Python language. The code is written so that it works
in either Python 2 or 3. The programs make use of the common numerical library numpy,
and the plotting package matplotlib. Any Python code snippets in this chapter assume
that the following packages have been imported:

import numpy as np

import numpy.random as rng

import matplotlib.pyplot as plt

import copy

import scipy.special

import numba

Full programs implementing the methods (and the particular problems) used in this
chapter are provided online.5

4 Some people claim that MCMC stands for Monte Carlo Markov Chains, but they are wrong.
5 https://github.com/eggplantbren/NSwMCMC.

www.cambridge.org/9781107102132
www.cambridge.org

Cambridge University Press
978-1-107-10213-2 — Bayesian Astrophysics
Edited by Andrés Asensio Ramos , Íñigo Arregui
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Bayesian Inference and Computation: A Beginner’s Guide 3

1.3 Parameter Estimation

Almost all data-analysis problems can be interpreted as parameter estimation problems.
The term parameter has a few different meanings, but you can usually think of it as a
synonym for unknown quantity. When you learned how to solve equations in high school
algebra, you found the value of an unknown quantity (often called x) when you had
enough information to determine its value with certainty. In science, we almost never
have enough information to determine a quantity without any uncertainty, which is why
we need probability theory and Bayesian inference.
Here, we denote our unknown parameters by θ, which could be a single parameter or

perhaps a vector of parameters (e.g. the distance to a star and the angular diameter of the
star). To start, we need to have some idea of the set of possible values we are considering.
For example, are the parameters integers? Real numbers? Positive real numbers? In some
examples, the definition of the parameters already restricts the set of possible values. For
example, the proportion of extrasolar planets in the Milky Way that contain life cannot
be less than 0 or greater than 1. Strictly speaking, it has to be a rational number, but it
probably will not make much difference if we just say it is a real number between 0 and 1
(inclusive). The distance to a star (measured in whatever units you like) is presumably a
positive real number, as is its angular diameter. The set of possible values you are willing
to consider is called the hypothesis space.
To start using Bayesian inference, you need to assign a probability distribution on

the hypothesis space, which models your initial uncertainty about the parameters. This
probability distribution is called the prior. We then use Bayes’ rule, a consequence of the
product rule of probability, to calculate the posterior distribution, which describes our
updated state of knowledge about the values of the parameters, after taking the data D
into account.
For a prior distribution p(θ|I) (read as ‘the probability distribution for θ given I’),

and a sampling distribution p(D|θ, I), Bayes’ rule allows us to calculate the posterior

distribution for θ:

p(θ|D, I) =
p(θ|I)p(D|θ, I)

p(D|I) . (1.1)

The I in Equation 1.1 refers to background information and assumptions; basically, it
stands for everything you know about the problem apart from the data. The I appears in
the background of all of the terms in Equation 1.1, and is often omitted. Note also that
the notation used in Equation 1.1 is highly simplified but conventional among Bayesians;
see the appendix for a discussion of notation. For brevity we can suppress the I (remove
it from the right-hand side of all equations) and just write:

p(θ|D) =
p(θ)p(D|θ)

p(D)
. (1.2)

The result is a probability distribution for θ which describes our state of knowledge
about θ after taking into account the data. The denominator, since it does not depend
on θ, is a normalising constant, usually called the marginal likelihood or alternatively
the evidence. Since the posterior is a probability distribution, its total integral (or sum,
if the hypothesis space is discrete) must equal 1. Therefore we can write the marginal
likelihood as:

p(D|I) =
∫

p(θ|I)p(D|θ, I) dθ, (1.3)

where the integral is over the entire N -dimensional parameter space.

www.cambridge.org/9781107102132
www.cambridge.org

Cambridge University Press
978-1-107-10213-2 — Bayesian Astrophysics
Edited by Andrés Asensio Ramos , Íñigo Arregui
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

4 Brendon J. Brewer

0 20 40 60 80 100

θ

0.00

0.02

0.04

0.06

0.08

0.10

0.12

P
ro

b
a
b
il
it
y

D
en

si
ty

Prior

Likelihood

Posterior

‘Best fit’

Figure 1.1 An example prior distribution for a single parameter (blue) gets updated to the
posterior distribution (red) by the data. The data enters through the likelihood function (cyan
dotted line). Many traditional ‘best fit’ methods are based on finding the maximum likelihood
estimate, which is the peak of the likelihood function, here denoted by a star.

The posterior distribution is usually narrower than the prior distribution, indicating
that we have learnt something from the data, and our uncertainty about the value of the
parameters has decreased. See Figure 1.1 for an example of the qualitative behaviour we
usually see when updating from a prior distribution to a posterior distribution.

1.4 Transit Example

To become more familiar with Bayesian calculations, we will work through a simple curve-
fitting example. Many astronomical data-analysis problems can be viewed as examples
of curve fitting. Consider a transiting exoplanet, like one observed by the Kepler space
observatory. The light curve of the star shows an approximately constant brightness as
a function of time, with a small dip as the exoplanet moves directly in front of the
star. Clearly, real Kepler data is much more complex than this example, as stars vary in
brightness in complicated ways, and the shape of the transit signal itself is more complex
than the model we use here. Nevertheless, this example contains many of the features
and complications that arise in a more realistic analysis.
The dataset, along with the true curve, is shown in Figure 1.2. The equation for the

true curve is:

µ(t) =

{

10, 2.5 ≤ t ≤ 4.5
5, otherwise.

Assume we do not know the equation for the true curve (as we would not in reality),
but we at least know that it is a function of the following form:

µ(t) =

{

A− b, (tc − w/2) ≤ t ≤ (tc + w/2)
A, otherwise,

where A is the brightness away from the transit, b is the depth of the transit, tc is the
time of the centre of the transit, and w is the width of the transit.

www.cambridge.org/9781107102132
www.cambridge.org

Cambridge University Press
978-1-107-10213-2 — Bayesian Astrophysics
Edited by Andrés Asensio Ramos , Íñigo Arregui
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Bayesian Inference and Computation: A Beginner’s Guide 5

0 2 4 6 8 10

Time

0

2

4

6

8

10

12

14

M
a
g
n
it

u
d
e

Figure 1.2 The ‘transit’ dataset. The red curve shows the model prediction based on the true
values of the parameters, and the blue points are the noisy measurements.

Thus, the problem has been reduced from not knowing the true curve µ(t) to not
knowing the values of 4 quantities (parameters) A, b, tc, and w. Applying Bayesian
inference to this problem involves calculating the posterior distribution for A, b, tc, and
w, given the data D. For this specific setup, Bayes’ rule states:

p(A, b, tc, w|D) =
p(A, b, tc, w)p(D|A, b, tc, w)

p(D)
. (1.4)

So, in order for the posterior distribution to be well defined, we need to choose a prior
distribution p(A, b, tc, w) for the parameters, and a sampling distribution p(D|A, b, tc, w)
for the data. Since the denominator p(D) is not a function of the parameters, it plays
the role of a normalising constant that ensures the posterior distribution integrates to 1,
as any probability distribution must.

1.4.1 Sampling Distribution

The sampling distribution is the probability distribution we would assign for the data if
we knew the true values of the parameters. A useful way to think about the sampling
distribution is to write some code whose input is the true parameter values, and whose
output is a simulated dataset. Whatever probability distribution you use to simulate your
dataset is your sampling distribution.
In many situations, it is conventional to assign a normal distribution (also known as a

Gaussian distribution) to each data point, where the mean of the normal distribution is
the noise-free model prediction, and the standard deviation of the normal distribution is
given by the size of the error bar. Later, we will see how to relax these assumptions in a
useful way. The probability density for the data given the parameters (i.e. the sampling
distribution) is:

p(D|A, b, tc, w) =
N
∏

i=1

1

σi

√
2π

exp

[

− 1

2σ2
i

(Di − µ(ti))
2

]

. (1.5)

www.cambridge.org/9781107102132
www.cambridge.org

Cambridge University Press
978-1-107-10213-2 — Bayesian Astrophysics
Edited by Andrés Asensio Ramos , Íñigo Arregui
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 Brendon J. Brewer

This is a product of N terms, one for each data point, and is really a probability
distribution over the N -dimensional space of possible datasets. We have assumed that
each data point is independent (given the parameters). That is, if we knew the parameters
and a subset of the data points, we would use only the parameters (not the data points)
to predict the remaining data points.
When the dataset is known, Equation 1.5 becomes a function of the parameters only,

known as the likelihood function. The curve predicted by the model, here written as
µ(ti) (where I have suppressed the implicit dependence on the parameters), provides the
mean of the normal distribution. Remember that the independence assumption is not
an assumption about the actual dataset, but an assumption about our prior information
about the dataset. It does not make sense to say that a particular dataset is or is not
independent. Independence is a property of probability distributions.
Equation 1.5 is the sampling distribution (and the likelihood function) for our problem,

but it is fairly cumbersome to write. Statisticians have developed a shorthand notation
for writing probability distributions. This is extremely useful for communicating your
assumptions without having to write the entire probability-density equation. To commu-
nicate Equation 1.5, we can simply write:

Di ∼ N
(

µ(ti), σ
2
i

)

, (1.6)

i.e. each data point has a normal distribution (denoted by N) with mean µ(ti) (which
depends on the parameters) and standard deviation σ. For the normal distribution, it is
traditional to write the variance (standard deviation squared) as the second argument,
but since the standard deviation is a more intuitive quantity (being in the same units as
the mean), we often literally write the standard deviation, squared (e.g. 32). For other
probability distributions the arguments in the parentheses are whatever parameters make
sense for that family of distributions.

1.4.2 Priors

Now we need a prior for the unknown parameters A, b, tc, and w. This is a probability
distribution over a 4-dimensional parameter space. To simplify things, we can assign
independent priors for each parameter, and multiply these together to produce the joint
prior:

p(A, b, tc, w) = p(A)p(b)p(tc)p(w). (1.7)

This prior distribution models our uncertainty about the parameters before taking into
account the data. The independence assumption implies that if we were to learn the value
of one of the parameters, this would not tell us anything about the others. This may or
may not be realistic in a given application, but it is a useful starting point.
Another useful starting point for priors is the uniform distribution, which has a constant

probability density between some lower and upper limit. Use 4 uniform distributions for
our priors:

A ∼ U(−100, 100) (1.8)

b ∼ U(0, 10) (1.9)

tc ∼ U(tmin, tmax) (1.10)

w ∼ U(0, tmax − tmin). (1.11)

The full expression for the joint prior probability density is:

p(A, b, tc, w) =

{ 1
2000(tmax−tmin)

2 , (A, b, tc, w) ∈ S

0, otherwise,
(1.12)

www.cambridge.org/9781107102132
www.cambridge.org

Cambridge University Press
978-1-107-10213-2 — Bayesian Astrophysics
Edited by Andrés Asensio Ramos , Íñigo Arregui
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Bayesian Inference and Computation: A Beginner’s Guide 7

where S is the set of allowed values. Even more simply, we can ignore the normalising
constant and the prior boundaries and just write:

p(A, b, tc, w) ∝ 1, (1.13)

although if we use this shortcut, we must remember that the boundaries are implicit.
Now that we have specified our assumed prior information in the form of a sampling

distribution and a prior, we are ready to go. By Bayes’ rule, we have an expression for
the posterior distribution immediately:

p(A, b, tc, w|D) ∝ p(A, b, tc, w)p(D|A, b, tc, w), (1.14)

which is proportional to the prior times the likelihood. In the likelihood expression
we substitute the actual observed dataset into the equation, so that it is a function
of the parameters only. The main problem with using Bayes’s rule this way is that a
mathematical expression for a probability distribution in a 4-dimensional space is not
very easy to understand intuitively. For this reason, we usually calculate summaries of
the posterior distribution. The main computational tool for doing this is MCMC.

1.5 Markov Chain Monte Carlo

Monte Carlo methods allow us to calculate any property of a probability distribution that
is an expectation value. For example, if we have a single variable x with a probability
density p(x), the expected value is

E(x) =

∞
∫

−∞

xp(x) dx (1.15)

which is a measure of the ‘centre of mass’ of the probability distribution.
If we had a set of points {x1, x2, . . . , xN} ‘sampled from’ f(x), we could replace the

integral with a simple average:

E(x) ≈ 1

N

N
∑

i=1

xi. (1.16)

In 1 dimension, this may not seem very useful. Evaluating a 1-dimensional integral analyt-
ically is often possible, and doing it numerically using the trapezoidal rule (or a similar
approximation) is quite straightforward. However, Monte Carlo really becomes useful
in higher-dimensional problems. For example, consider a problem with five unknown
quantities with probability distribution p(a, b, c, d, e), and suppose we want to know the
probability that a is greater than b+ c. We could do the integral

P (a > b+ c) =

∫

p(a, b, c, d, e)1 (a > b+ c) da db dc dd de (1.17)

where 1 (a > b+ c) is a function that is equal to 1 where the condition is satisfied and
0 where it is not. However, if we could obtain a sample of points in the five-dimensional
space, the Monte Carlo estimate of the probability is simply

P (a > b+ c) ≈ 1

N

N
∑

i=1

1 (ai > bi + ci), (1.18)

which is just the fraction of the samples that satisfy the condition.

www.cambridge.org/9781107102132
www.cambridge.org

Cambridge University Press
978-1-107-10213-2 — Bayesian Astrophysics
Edited by Andrés Asensio Ramos , Íñigo Arregui
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 Brendon J. Brewer

Another important use of Monte Carlo is marginalisation. Suppose again that we have
a probability distribution for 5 variables, but we only care about 1 of them. For example,
the marginal distribution of a is given by

p(a) =

∫

p(a, b, c, d, e) db dc dd de (1.19)

which describes your uncertainty about a, rather than your uncertainty about all of the
variables. This integral might be analytically intractable. With Monte Carlo, if you have
samples in the five-dimensional space but you only look at the first coordinate, then you
have samples from p(a). This is demonstrated graphically in Figure 1.3.

In Bayesian inference, the most important probability distribution is the posterior
distribution for the parameters. We would like to be able to generate samples from the
posterior, so we can compute probabilities, expectations, and other summaries easily.
MCMC allows us to generate these samples.

−4 −2 0 2 4
a

−4

−2

0

2

4

b

Joint Posterior Distribution

−4 −2 0 2 4
a

−4

−2

0

2

4

b

Joint Posterior Distribution

−4 −2 0 2 4
a

0.0

0.2

0.4

P
ro

b
a
b
il
it
y

D
en

si
ty

Marginal Posterior Distribution

−4 −2 0 2 4
a

0

10

20

30

40

50

N
u
m

b
er

o
f
S
a
m

p
le

s

Marginal Posterior Distribution

Figure 1.3 An example posterior distribution for 2 parameters a and b, taken from my STATS
331 undergraduate lecture notes. The full joint distribution is shown in the top left, and the
marginal distribution for a (bottom left) is calculated by integrating over all possible b values, a
potentially non-trivial calculation. The top right panel has points drawn from the joint posterior.
Points drawn from the marginal posterior (bottom right) are obtained by ignoring the b values
of the points, a trivial operation.

www.cambridge.org/9781107102132
www.cambridge.org

Cambridge University Press
978-1-107-10213-2 — Bayesian Astrophysics
Edited by Andrés Asensio Ramos , Íñigo Arregui
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Bayesian Inference and Computation: A Beginner’s Guide 9

1.5.1 The Metropolis Algorithm

The Metropolis-Hastings algorithm, also known as the Metropolis algorithm, is the oldest
and most fundamental MCMC algorithm. It is quite straightforward to implement, and
works well on many problems. The version of the Metropolis algorithm presented here is
sometimes called random walk Metropolis. More sophisticated choices are possible, but
usually require problem-specific knowledge.
Consider a problem with unknown parameters θ. If the prior is some density π(θ) and

the likelihood function is L(θ), then the posterior distribution will be proportional to
π(θ)L(θ). The marginal likelihood Z =

∫

π(θ)L(θ) dθ is unknown, but the Metropolis
algorithm does not need to know it: all we need is the ability to evaluate π and L
at a given position in the parameter space. The Metropolis algorithm tells us how to
move a ‘particle’ around the parameter space so that we eventually sample the posterior
distribution. That is, the amount of time spent in any particular region of parameter
space will be approximately proportional to the posterior probability in that region.
Note the change of notation from p(θ), p(D|θ), and p(D) to π, L, and Z, respectively.
This is a convention when discussing computational methods (as opposed to discussing
priors, datasets, etc.).
The Metropolis algorithm can be summarised as follows:
(i) Choose a starting position θ, somewhere in the parameter space.
(ii) Generate a proposed position θ′ from a proposal distribution q(θ′|θ). A common

choice is a ‘random walk’ proposal, where a small perturbation is added to the
current position.

(iii) With probability α = min
(

1, q(θ|θ′)
q(θ′|θ)

π(θ′)
π(θ)

L(θ′)
L(θ)

)

, accept the proposal (i.e. replace θ

with θ′). Otherwise, do nothing (i.e. remain at θ).
(iv) Repeat steps (i)–(iii) until you have enough samples.
When a proposed move is rejected (and the particle remains in the same place), it is

important to count the particle’s position again in the output. This is how the algorithm
ends up spending more time in regions of high probability: moves into those regions tend
to be accepted, whereas moves out of those regions are often rejected. The Metropolis
algorithm is quite straightforward to implement and I encourage you to attempt this
yourself if you haven’t done so before.
Python code implementing the Metropolis algorithm is given below (this code has been

stripped of features for keeping track of the output, and shows just the algorithm itself).
Note several features. First, the functions used to measure the prior density and likelihood
of any point, and the function to generate a proposal in the first place, are problem specific
and assumed to have been implemented elsewhere. Second, for numerical reasons we deal
with the (natural) log of the prior density, the likelihood, and the acceptance probability.
Third, note how the log prior and log likelihood functions only need to be called
once per iteration, not twice as one might naively think. Finally, no q ratio is required in
the acceptance probability: we assume that we are working with a symmetric proposal
distribution, where the probability of proposing a move to position a given the current
position is b is the same as the probability of the reverse (proposing b when at position a).

Generate a starting point (if you have a good guess , use it)

In the full version of the code , the initial point is drawn

from the prior.

params = np.array ([1., 1., 1., 1.])

logp , logl = log_prior(params), log_likelihood(params)

www.cambridge.org/9781107102132
www.cambridge.org

Cambridge University Press
978-1-107-10213-2 — Bayesian Astrophysics
Edited by Andrés Asensio Ramos , Íñigo Arregui
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 Brendon J. Brewer

Total number of iterations

steps = 100000

Main loop

for i in range(0, steps):

Generate proposal

new = proposal(params)

Evaluate prior and likelihood for the proposal

logp_new = log_prior(new)

logl_new = -np.Inf

Only evaluate likelihood if prior prob isn’t zero

if logp_new != -np.Inf:

logl_new = log_likelihood(new)

Acceptance probability

log_alpha = (logl_new - logl) + (logp_new - logp)

if log_alpha > 0.:

log_alpha = 0.

Accept?

if rng.rand() <= np.exp(log_alpha):

params = new

logp = logp_new

logl = logl_new

The ‘random walk’ proposal generates a proposed value θ′ from a normal (Gaussian)
distribution centred around the current position θ. The user is free to choose the width of
the normal distribution. Here is a Python code snippet showing a proposal with width L:

Generate a proposal

proposal = theta + L*rng.randn()

The performance of the Metropolis algorithm depends quite strongly on the width of
the proposal distribution. If the width is too small, most moves will be accepted, but
will not move very far. If the width is too large, most moves will be rejected, so you end
up stuck in 1 place. Some authors recommend using preliminary runs to find an optimal
width. Instead, I recommend that you use a mixture of widths. Basically, every time we
make a proposal, the width is drawn from some range, rather than being constant. The
biggest possible width we would ever want should be roughly the order of magnitude of
the width of the prior (since the posterior is usually narrower than the prior). It is rare
that we would need proposals many orders of magnitude smaller than that. My default
suggestion is to randomise the logarithm of the step size, as in this code snippet:

A heavy -tailed proposal distribution

Generate a standard deviation

L = 10.**(1.5 - 6.* rng.rand ())

Use the standard deviation for the proposal

proposal = theta + L*rng.randn()

www.cambridge.org/9781107102132
www.cambridge.org

