CONTENTS

Preface xv
Acknowledgments xx

Part I Introduction

1 The digital abstraction 3
 1.1 Digital signals 3
 1.2 Digital signals tolerate noise 5
 1.3 Digital signals represent complex data 8
 1.3.1 Representing the day of the year 10
 1.3.2 Representing subtractive colors 11
 1.4 Digital logic functions 11
 1.5 VHDL description of digital circuits and systems 13
 1.6 Digital logic in systems 16
Summary 17
Bibliographic notes 18
Exercises 18

2 The practice of digital system design 22
 2.1 The design process 22
 2.1.1 Specification 22
 2.1.2 Concept development and feasibility 24
 2.1.3 Partitioning and detailed design 26
 2.1.4 Verification 27
 2.2 Digital systems are built from chips and boards 28
 2.3 Computer-aided design tools 32
 2.4 Moore’s law and digital system evolution 34
Summary 36
Bibliographic notes 36
Exercises 37

Part II Combinational logic

3 Boolean algebra 43
 3.1 Axioms 43
Table of Contents

3.2 Properties 44

3.3 Dual functions 46

3.4 Normal form 47

3.5 From equations to gates 48

3.6 Boolean expressions in VHDL 51

Summary 54

Bibliographic notes 55

Exercises 55

4 CMOS logic circuits

4.1 Switch logic 58

4.2 Switch model of MOS transistors 62

4.3 CMOS gate circuits 68

4.3.1 Basic CMOS gate circuit 69

4.3.2 Inverters, NANDs, and NORs 70

4.3.3 Complex gates 72

4.3.4 Tri-state circuits 75

4.3.5 Circuits to avoid 76

Summary 77

Bibliographic notes 78

Exercises 78

5 Delay and power of CMOS circuits

5.1 Delay of static CMOS gates 82

5.2 Fan-out and driving large loads 85

5.3 Fan-in and logical effort 86

5.4 Delay calculation 89

5.5 Optimizing delay 92

5.6 Wire delay 94

5.7 Power dissipation in CMOS circuits 98

5.7.1 Dynamic power 98

5.7.2 Static power 99

5.7.3 Power scaling 100

Summary 101

Bibliographic notes 101

Exercises 102

6 Combinational logic design

6.1 Combinational logic 105

6.2 Closure 105

6.3 Truth tables, minterms, and normal form 107

6.4 Implicants and cubes 110

6.5 Karnaugh maps 113

6.6 Covering a function 115
Table of Contents

6.7 From a cover to gates 116
6.8 Incompletely specified functions 117
6.9 Product-of-sums implementation 119
6.10 Hazards 121
Summary 123
Bibliographic notes 124
Exercises 124

7 VHDL descriptions of combinational logic 129
7.1 The prime number circuit in VHDL 129
 7.1.1 A VHDL design entity 129
 7.1.2 The case statement 131
 7.1.3 The case? statement 134
 7.1.4 The if statement 136
 7.1.5 Concurrent signal assignment statements 136
 7.1.6 Selected signal assignment statements 137
 7.1.7 Conditional signal assignment statements 138
 7.1.8 Structural description 138
 7.1.9 The decimal prime number function 141
7.2 A testbench for the prime number circuit 143
7.3 Example: a seven-segment decoder 148
Summary 153
Bibliographic notes 154
Exercises 154

8 Combinational building blocks 157
8.1 Multi-bit notation 157
8.2 Decoders 157
8.3 Multiplexers 163
8.4 Encoders 171
8.5 Arbiters and priority encoders 173
8.6 Comparators 180
8.7 Shifters 183
8.8 Read-only memories 184
8.9 Read–write memories 189
8.10 Programmable logic arrays 192
8.11 Data sheets 193
8.12 Intellectual property 195
Summary 195
Bibliographic notes 196
Exercises 196

9 Combinational examples 199
9.1 Multiple-of-3 circuit 199
Contents

9.2 Tomorrow circuit .. 201
9.3 Priority arbiter ... 205
9.4 Tic-tac-toe .. 207
Summary ... 214
Exercises .. 215

Part III Arithmetic circuits

10 Arithmetic circuits .. 221
 10.1 Binary numbers 221
 10.2 Binary addition 224
 10.3 Negative numbers and subtraction 230
 10.4 Multiplication .. 237
 10.5 Division ... 240
Summary ... 244
Exercises .. 245

11 Fixed- and floating-point numbers 250
 11.1 Representation error: accuracy, precision, and resolution 250
 11.2 Fixed-point numbers 252
 11.2.1 Representation 252
 11.2.2 Operations 255
 11.3 Floating-point numbers 257
 11.3.1 Representation 257
 11.3.2 Denormalized numbers and gradual underflow 258
 11.3.3 Floating-point multiplication 259
 11.3.4 Floating-point addition/subtraction 260
Summary ... 265
Bibliographic note ... 265
Exercises .. 265

12 Fast arithmetic circuits 269
 12.1 Carry look-ahead 269
 12.2 Booth recoding .. 276
 12.3 Wallace trees ... 278
 12.4 Synthesis notes 284
Summary ... 286
Bibliographic notes 287
Exercises .. 287

13 Arithmetic examples 290
 13.1 Complex multiplication 290
 13.2 Converting between fixed- and floating-point formats 291
Part IV Synchronous sequential logic

14 Sequential logic 305
 14.1 Sequential circuits 305
 14.2 Synchronous sequential circuits 307
 14.3 Traffic-light controller 309
 14.4 State assignment 312
 14.5 Implementation of finite-state machines 313
 14.6 VHDL implementation of finite-state machines 316
 Summary 324
 Bibliographic notes 324
 Exercises 324

15 Timing constraints 328
 15.1 Propagation and contamination delay 328
 15.2 The D flip-flop 331
 15.3 Setup- and hold-time constraints 331
 15.4 The effect of clock skew 334
 15.5 Timing examples 336
 15.6 Timing and logic synthesis 337
 Summary 339
 Bibliographic notes 340
 Exercises 340

16 Datapath sequential logic 344
 16.1 Counters 344
 16.1.1 A simpler counter 344
 16.1.2 Up/down/load counter 346
 16.1.3 A timer 349
 16.2 Shift registers 352
 16.2.1 A simple shift register 352
 16.2.2 Left/right/load (LRL) shift register 353
 16.2.3 Universal shifter/counter 353
 16.3 Control and data partitioning 356
 16.3.1 Example: vending machine FSM 357
Table of Contents

16.3.2 Example: combination lock 367
Summary 372
Exercises 372

17 Factoring finite-state machines 375
17.1 A light flasher 375
17.2 Traffic-light controller 382
Summary 393
Exercises 394

18 Microcode 398
18.1 Simple microcoded FSM 398
18.2 Instruction sequencing 402
18.3 Multi-way branches 408
18.4 Multiple instruction types 410
18.5 Microcode subroutines 414
18.6 Simple computer 420
Summary 427
Bibliographic notes 427
Exercises 428

19 Sequential examples 431
19.1 Divide-by-3 counter 431
19.2 SOS detector 432
19.3 Tic-tac-toe game 439
19.4 Huffman encoder/decoder 439
19.4.1 Huffman encoder 440
19.4.2 Huffman decoder 442
Summary 448
Bibliographic note 448
Exercises 448

Part V Practical design 453

20 Verification and test 453
20.1 Design verification 453
20.1.1 Verification coverage 453
20.1.2 Types of tests 454
20.1.3 Static timing analysis 455
20.1.4 Formal verification 455
20.1.5 Bug tracking 456
20.2 Test 456
20.2.1 Fault models 456
Part VI System design

21 System-level design

21.1 System design process 467
21.2 Specification 468
 21.2.1 Pong 468
 21.2.2 DES cracker 471
 21.2.3 Music player 472
21.3 Partitioning 473
 21.3.1 Pong 474
 21.3.2 DES cracker 475
 21.3.3 Music synthesizer 475
Summary 476
Bibliographic notes 477
Exercises 477

22 Interface and system-level timing

22.1 Interface timing 479
 22.1.1 Always valid timing 479
 22.1.2 Periodically valid signals 480
 22.1.3 Flow control 481
22.2 Interface partitioning and selection 482
22.3 Serial and packetized interfaces 483
22.4 Isochronous timing 486
22.5 Timing tables 487
 22.5.1 Event flow 488
 22.5.2 Pipelining and anticipatory timing 488
22.6 Interface and timing examples 489
 22.6.1 Pong 489
 22.6.2 DES cracker 489
 22.6.3 Music player 493
Summary 493
Exercises 494
Contents

23 Pipelines
23.1 Basic pipelining 497
23.2 Example pipelines 500
23.3 Example: pipelining a ripple-carry adder 502
23.4 Pipeline stalls 505
23.5 Double buffering 507
23.6 Load balance 511
23.7 Variable loads 512
23.8 Resource sharing 516
Summary 517
Bibliographic notes 518
Exercises 518

24 Interconnect
24.1 Abstract interconnect 521
24.2 Buses 522
24.3 Crossbar switches 524
24.4 Interconnection networks 527
Summary 529
Bibliographic notes 529
Exercises 530

25 Memory systems
25.1 Memory primitives 532
25.1.1 SRAM arrays 532
25.1.2 DRAM chips 534
25.2 Bit-slicing and banking memory 536
25.3 Interleaved memory 537
25.4 Caches 540
Summary 544
Bibliographic notes 545
Exercises 545

Part VII Asynchronous logic

26 Asynchronous sequential circuits
26.1 Flow-table analysis 551
26.2 Flow-table synthesis: the toggle circuit 554
26.3 Races and state assignment 558
Summary 562
Bibliographic notes 563
Exercises 563
27 **Flip-flops**

27.1 Inside a latch
27.2 Inside a flip-flop
27.3 CMOS latches and flip-flops
27.4 Flow-table derivation of the latch
27.5 Flow-table synthesis of a D flip-flop
Summary
Bibliographic notes
Exercises

28 **Metastability and synchronization failure**

28.1 Synchronization failure
28.2 Metastability
28.3 Probability of entering and leaving an illegal state
28.4 Demonstration of metastability
Summary
Bibliographic notes
Exercises

29 **Synchronizer design**

29.1 Where are synchronizers used?
29.2 Brute-force synchronizer
29.3 The problem with multi-bit signals
29.4 FIFO synchronizer
Summary
Bibliographic notes
Exercises

Part VIII Appendix: VHDL coding style and syntax guide

Appendix A: VHDL coding style

A.1 Basic principles
A.2 All state should be in explicitly declared registers
A.3 Define combinational design entities so that they are easy to read
A.4 Assign all signals under all conditions
A.5 Keep design entities small
A.6 Large design entities should be structural
A.7 Use descriptive signal names
A.8 Use symbolic names for subfields of signals
A.9 Define constants
Contents

A.10 Comments should describe intention and give rationale, not state the obvious 619
A.11 Never forget you are defining hardware 620
A.12 Read and be a critic of VHDL code 620

Appendix B: VHDL syntax guide 622

B.1 Comments, identifiers, and keywords 623
B.2 Types 623
 B.2.1 Std_logic 624
 B.2.2 Boolean 624
 B.2.3 Integer 624
 B.2.4 Std_logic_vector 625
 B.2.5 Subtypes 625
 B.2.6 Enumeration 626
 B.2.7 Arrays and records 626
 B.2.8 Qualified expressions 627
B.3 Libraries, packages, and using multiple files 627
B.4 Design entities 628
B.5 Slices, concatenation, aggregates, operators, and expressions 629
B.6 Concurrent statements 631
 B.6.1 Concurrent signal assignment 632
 B.6.2 Component instantiation 634
B.7 Multiple signal drivers and resolution functions 636
B.8 Attributes 638
B.9 Process statements 640
 B.9.1 The process sensitivity list and execution timing 641
 B.9.2 Wait and report statements 644
 B.9.3 If statements 644
 B.9.4 Case and matching case statements 644
 B.9.5 Signal and variable assignment statements 646
B.10 Synthesizable process statements 648
 B.10.1 Type 1: purely combinational 649
 B.10.2 Type 2: edge-sensitive 649
 B.10.3 Type 3: edge-sensitive with asynchronous reset 650

References 653
Index of VHDL design entities 658
Subject index 660