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Setting the scene
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What are singularities all about?

Many mathematical descriptions of natural phenomena use the language of
partial differential equations (PDEs). For example, fluid flow is described by
the Navier—Stokes equation for the velocity, density, and pressure inside a fluid.
A typical situation is shown in Fig. 1.1: a container filled with a viscous fluid
is emptying through a hole in the bottom. The flow that results deforms the
interface between the fluid and the air above it, whose shape is observed by
lighting the container from behind and placing a camera on the other side (the
interface is axisymmetric with respect to the axis of symmetry of the hole).
The light passes through the fluid but is refracted by the fluid—air interface,
which appears black.

The picture on the left of Fig. 1.1 conforms with the naive expectation that
the scale of deformation of the interface is set by scales imprinted on the sys-
tem externally, for example the size of the sink hole in the bottom (diameter
d = 1 mm) or the minimum distance & between the interface and the bot-
tom. However, this expectation is contradicted by the picture on the right,
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Figure 1.1 A container filled with viscous silicone oil is emptying slowly through
a circular hole at the bottom [55], whose diameter d = 1 mm.
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4 What are singularities all about?

whose experimental conditions differ from those on the left only by the fact
that the fluid has run out to a slightly lower mean level. Although the mini-
mum distance 4 is still comparable with the hole diameter, the free surface has
deformed into a very sharp tip. The size of the tip, as measured by its radius of
curvature, is below the optical resolution of about 1 pwm, and extrapolation of
the experimental data suggests a vanishingly small value [55].

Thus the interface is no longer smooth, and the system has reached a sin-
gularity; the curvature, which involves the second derivative of the shape,
diverges as the tip is approached. All examples of singularities to be discussed
in this book involve quantities diverging in either space or time (so-called
blowup) or the divergence of some derivative of the original quantities. Intu-
itively, this means that a local length scale of the system goes to zero. Often
this is the result of nonlinearities of the problem, which couple different length
scales. As in Fig. 1.1, nonlinearities serve to focus the flow into very small
scales, although it is driven on scales which are much larger.

Near a singularity, the characteristic length scales of the solution are ulti-
mately smaller than the microscopic length scales of the physical system it
describes, such as the size of a molecule. This calls into question the assump-
tions made in deriving the equation (most often a PDE) from the underlying
physics. As we shall see, in many cases the solution of the differential equation
still presents us with a unique and physically meaningful answer to the problem
we posed originally; however, a certain (in all likelihood very small) region in
space or time then needs to be excluded, for which no physical prediction can
be made.

In other cases the missing microscopic information needs to be supple-
mented by imposing additional physical conditions in order to guarantee the
uniqueness of the solution. Finally, there are cases in which microscopic
information has to be included explicitly in order to obtain a meaningful
solution.

The fingerprint of a PDE

As we will see throughout this book, many nonlinear PDEs exhibit a generic
mechanism by which singularities form. Since singularities are a local phe-
nomenon (cf. Fig. 1.1), involving arbitrarily small length scales, their structure
is usually universal, i.e. independent of the initial conditions or boundary con-
ditions imposed over macroscopic distances. In other words, singularities are
the “fingerprint” of a nonlinear PDE. They are the only thing one can say about
the solution that is independent of the initial or boundary conditions and thus
represents the intrinsic structure of the equation itself. Let us illustrate some
key features using physical examples below.
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1.1 Drop pinch-off: scaling and universality 5

1.1 Drop pinch-off: scaling and universality

Figure 1.2 shows a snapshot of the splash produced by a drop that has fallen
into a pool of water, forming a nearly cylindrical column. The picture reveals
that such a cylinder is unstable: even before the splash has had a chance to
fall back into the pool the radius of the liquid column goes to zero at a point
and a drop pinches off. Qualitatively, the reason is that the drop has a lower
surface area than a piece of the cylinder occupying the same volume. To create
an interface between fluid and air, one requires an energy equal to the surface
tension y times the surface area. Thus the system can reach a lower energy
state by decaying into drops.

A point of particular interest is the moment when the volume of fluid sepa-
rates into two pieces, and a drop is formed. A numerical description will run
into problems at that point since such a change of topology represents a dis-
continuous transformation. Moreover, pinch-off events determine the structure
of the resulting flow; they are the crucial moments where the solution changes
qualitatively. We now focus on these singularities (to be discussed in detail in
Chapter 7) which occur at the time of pinch-off, which we denote by #g.

Scaling

The formation of a singularity is controlled by the time interval At = £y — ¢
to pinch-off. Note that we have defined A¢ to be a positive quantity for ¢ < fo,
before the singularity occurs; we will come back to this point below. The
dimension of surface tension is that of an energy per unit area: [y] = g/s>.
If the viscosity is sufficiently small to be irrelevant, the fluid motion is resisted
only by inertia. Thus the other important parameter is the density p, represent-
ing the amount of mass being moved around, with [p] = g/cm>. Now let us
assume that the singularity is characterized by a single length scale, which we
can take as the minimum radius spyj,. Then, dimensionally, the only possible
way to represent the minimum radius is [168]:

5 \1/3
hmin%A(yAt /,0) x AL, (1.1)

Thus the minimum radius behaves as a power law with scaling exponent
a = 2/3, a conclusion which has been tested experimentally with great preci-
sion; see Fig. 1.2 (right). Singularities (at which arbitrarily small length scales
are produced) lack a particular length scale, so they are typically described
by power laws, which are invariant under a change of length scale; see
Section 2.4. A very simple but powerful tool to find scaling exponents is
dimensional analysis, as we have just seen. A more formal exposition of this
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6 What are singularities all about?

important tool is presented in Appendix C. We now illustrate it with another
example.

Example 1.1 (Nuclear explosions) In 1950, G.I. Taylor [206] calculated the
propagation of an intense blast wave (caused for example by a nuclear explo-
sion) into an ambient gas. His scaling argument was that at very high intensities
the only quantity measuring the strength of the explosion is the total energy E
of the explosion. As far the outside temperature or pressure is concerned, they
do not matter in comparison to their values inside. However, the initial den-
sity of the ambient gas atmosphere py is relevant, since it measures the inertial
resistance to the motion. Thus if we want to know the radius R of the blast at
a time ¢, the dimensions of the relevant quantities (energy, density, length, and
time) are, in terms of the units of mass, length, and time:

[E]l=¢g cmz/sz, [po] = g/cm3, [Rl=cm, [t]=s.

We can eliminate the units of mass and time between E, pg, and ¢ to find for
R a unique quantity, with dimensions of length, up to a constant prefactor I':

El‘2 1/5

R(t)=T <—> ) (1.2)
£0

This is Taylor’s result for the radius of an intense blast wave; we will calculate
the prefactor I" in Exercise 11.11.

Repeating the same argument using the language of the Buckingham
[1-theorem (see Appendix C), we have k = 4 quantities and m = 3 indepen-
dent units. Since k —m = 1, we can construct a single dimensionless quantity
(called a dimensionless group)

1/5
R,oo/

= E15.2/5°
According to (C.2) we have ¢ (IT) = 0 for a suitably defined function ¢. But
this is consistent only if ¢ (IT) = IT — I' = 0 for some constant I", which once
more implies (1.2). O

Before we go on, let us point to the considerable subtlety that often under-
lies dimensional arguments. Frequently, assumptions are made on physical
grounds which in general have to be confirmed by a detailed analysis. In the
case of drop breakup, we have assumed that there exists a single length scale
hmin characterizing the breakup. Dimensional analysis then demonstrates that
the scaling exponent « is determined uniquely by the local structure of the
equations alone. This scenario is known as self-similarity of the first kind [14].
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1.1 Drop pinch-off: scaling and universality 7
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Figure 1.2 On the left, a splash of water at the moment of pinch-off. Photograph
by Harold Edgerton. Copyright 2010 MIT. Courtesy of MIT Museum. On the
right, the minimum diameter of a mercury drop as a function of the time inter-
val from pinch-off. Reprinted with permission from [38]. Copyright 2004 by the
American Physical Society.

However, this need not be the case, and the solution for inviscid breakup
may be governed by two or more intrinsic length scales. This happens in the
breakup of a two-dimensional liquid sheet, in which case the minimum sheet
thickness and the typical width of the pinch region scale differently [39]. The
ratio of these two length scales is a dimensionless number and thus cannot be
fixed by dimensional analysis. As a result, the thickness and width of the sheet
may shrink according to different scaling exponents, to be determined as part
of the full solution to the problem. This case is known as self-similarity of the
second kind. In general, the exponents no longer assume rational values but
will become irrational numbers.

In reference to Example 1.1, the superficially very similar problem of the
focusing of a shock wave onto a point is an example of self-similarity of
the second kind [133]: the radius of the shock wave is governed by an irra-
tional exponent, different from that in (1.2). We will return to this problem in
Chapter 11 on shock waves.

Universality
Another, related, property of a singularity is the fact that its structure is insen-
sitive to initial conditions or other aspects of the large-scale structure of the
solution. This is a consequence of the fact that the singularity arises from
a local balance: in drop pinch-off, the dimensionless prefactor A in (1.1) is
expected to be universal since (1.1) is the solution of a nonlinear equation.
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8 What are singularities all about?
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Figure 1.3 Satellite formation in a water—glycerol jet, showing a satellite drop in
between two main drops. A satellite drop is the remnant of the elongated neck
between two main drops [75, 146].

Any change in amplitude would disturb the balance between different terms in
the equation. A detailed solution of the equation of motion shows that A has a
numerical value close to 0.7; see (7.98) below.

However, the concept of universality goes much deeper and governs the
entire spatial structure of a singularity. This is illustrated nicely by the breakup
of aliquid jet, shown in Fig. 1.3. It is evident that there are not only main drops
produced in the process, but also much smaller, so-called “satellite” drops.
Such a drop is formed from an elongated neck between two adjacent main
drops. The existence of the neck, in turn, is related to the fact that the profile
of the jet near the point of breakup is extremely asymmetric: toward the drop
it is very steep while toward the neck it is flat, forcing the neck into its slender
shape.

Thus the existence of satellite drops is a consequence of the nonlinear prop-
erties of the fluid motion close to breakup, which produces the asymmetric
shapes discussed above.

Drop formation of the type illustrated in Fig. 1.3 has many applications,
as reviewed in for example [16]. The classical technique of ink-jet printing
has been adapted to produce so-called microarrays for DNA analysis, to print
integrated circuits, and to produce miniature lenses for optical applications.
For all these applications it is very important to control the size of the drop
accurately; thus satellite drops are detrimental to the quality since they result
in at least two different droplet sizes. It is therefore natural to ask whether it is
possible to control the excitation of the jet leading to breakup in such a way
that only one type of drop is produced.

A hypothetical, more desirable, breakup configuration is illustrated schemat-
ically in Fig. 1.4, in which the profile is assumed symmetric with respect to the
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1.2 Stationary cusps: persistent singularities 9

Figure 1.4 A hypothetical breakup mode without satellite formation: an engineer-
ing dream that is unfulfillable.

pinch point so that breakup would occur in the middle, between two drops. In
that case the neck would snap back toward each of the drops, which would
receive the same amount of mass, making all drops equal. However, universal-
ity imposes that such a scenario is impossible: no matter how the jet is excited
or what the initial condition may be, the pinch-off dynamics will always be
similar to Fig. 1.3, independently of the initial conditions.

Continuation

To fully understand drop formation as shown in Fig. 1.3, one also needs to
address the problem of continuation across the singularity, treated in Chap-
ter 10. As a drop is formed, one proceeds from a simply connected domain
(before pinch-off) to a multiply connected domain (after pinch-off), which
is a discontinuous process. As a result, it is not clear whether this continua-
tion is unique, i.e. that there is a single post-breakup solution, with which the
pre-breakup solution can be continued. We will show that in the case of drop
formation there is indeed only one unique continuation which does not involve
discontinuities at a finite distance away from the singularity.

1.2 Stationary cusps: persistent singularities

The pinch-off singularity of a drop dominates the flow for a brief period
of time, as the piece of fluid breaks into two. We now discuss another type
of singularity, which is stationary and which is a generic feature for a range
of parameters. As an example, consider the intensity of light generated by the
reflection from a wedding ring, shown in Fig. 1.5 (left). The intensity is far
from uniform but instead becomes very large along certain line-like singular-
ities called caustics (from the Latin for “burning”). The caustic line itself has
a singular tip, where it ends in a cusp. We will investigate the nature of the
cusp in Chapter 14, where we show that its shape is described by the universal
power law

y o x?/3, (1.3)

where x is the width of the cusp and y the distance from its apex.
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10 What are singularities all about?

Figure 1.5 Two examples of cusp singularities, observed in very different con-
texts. On the left, the bright lines of a caustic produced by the focusing of wave
fronts (image by Ann Eggers). On the right, a jet of viscous fluid is poured into
a bath and imaged from the side, looking up toward the surface of the bath.
(Reprinted with permission from [184]. Copyright 2008, AIP Publishing LLC.)
The free surface ends in a cusp singularity, which lies on a circle with the jet axis
at its center.

A very different problem, also treated in Chapter 14, is shown in
Fig. 1.5 (right). A jet of viscous fluid falls into a bath of the same fluid, creating
a strong flow. The free surface deforms into a cusp, which ends in a circular
knife edge at the bottom. An analysis of this problem, which requires the solu-
tion of the viscous flow equations with a free surface, yields exactly the same
cusp shape, (1.3), as for the coffee cup caustic. Thus the concept of univer-
sality may in some cases apply more broadly, connecting phenomena of very
different physical origin.

One important aspect in which the two problems shown in Fig. 1.5 differ is
the mechanism by which the singularity is cut off on a small scale. The motion
of wave fronts, which results in the caustic, is described by a nonlinear equa-
tion, which emerges from the linear wave equation on a scale greater than the
wavelength of light [21, 22]. As one approaches the caustic the light intensity,
instead of diverging, dissolves into a characteristic diffraction pattern, which
we will study in Section 14.5. However, the singularity at the tip of the free
surface cusp is resolved by the smoothing effect of the surface tension y. Nev-
ertheless y does not by itself introduce a particular length scale. The surprising
result of a more detailed calculation reveals that the radius of curvature of the
cusp is in fact exponentially small in the value of the surface tension, i.e. it is
proportional to exp(—y ~1) [122]!

1.3 Shock waves: propagation

If a singularity persists for a finite period of time, the question arises how it will
move in space. Among the examples considered in the third part of the book
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