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Kálmán Győry is Professor Emeritus at the University of Debrecen, a member of the
Hungarian Academy of Sciences and a well-known researcher in Diophantine number
theory. Over his career he has obtained several significant and pioneering results, among
others on unit equations, decomposable form equations, and their various applications.
His results have been published in one book and 160 research papers. Győry is also the
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Preface

Diophantine number theory (the study of Diophantine equations, Diophantine
inequalities and their applications) is a very active area in number theory with a
long history. This book is about unit equations, a class of Diophantine equations
of central importance in Diophantine number theory, and their applications.
Unit equations are equations of the form

a1x1 + · · · + anxn = 1

to be solved in elements x1, . . . , xn from a finitely generated multiplicative
group �, contained in a field K , where a1, . . . , an are non-zero elements of
K . Such equations were studied originally in the cases where the number
of unknowns n = 2, K is a number field and � is the group of units of the
ring of integers of K , or more generally, where � is the group of S-units
in K . Unit equations have a great variety of applications, among others to
other classes of Diophantine equations, to algebraic number theory and to
Diophantine geometry.

Certain results concerning unit equations and their applications covered in
our book were already presented, mostly in special or weaker form, in the books
of Lang (1962, 1978, 1983), Győry (1980b), Sprindžuk (1982, 1993), Evertse
(1983), Mason (1984), Shorey and Tijdeman (1986), de Weger (1989), Schmidt
(1991), Smart (1998), Bombieri and Gubler (2006), Baker and Wüstholz (2007)
and Zannier (2009), and in the survey papers of Evertse, Győry, Stewart and
Tijdeman (1988b), Győry (1992a, 1996, 2002a, 2010) and Bérczes, Evertse
and Győry (2007b).

In 1988, we wrote, together with Stewart and Tijdeman, the survey Evertse,
Győry, Stewart and Tijdeman (1988b) on unit equations and their applications
giving the state of the art of the subject at that time. Since then, the theory
of unit equations has been greatly expanded. In the present book we have
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x Preface

tried to give a comprehensive and up-to-date treatment of unit equations and
their applications. We prove effective finiteness results for unit equations in
two unknowns, describe practical algorithms to solve such equations, give
explicit upper bounds for the number of solutions, discuss analogues of unit
equations over function fields and over finitely generated domains, and present
various applications. The proofs of the results concerning unit equations are
mostly based on the very powerful Thue–Siegel–Roth–Schmidt theory from
Diophantine approximation and Baker’s theory from transcendence theory. We
note that there are other important methods and applications, some discovered
very recently, that deserve a detailed discussion, but to which we could pay
only little or no attention due to lack of time and space.

The present book is the first in a series of two. The second book,
titled Discriminant Equations in Diophantine Number Theory, also published
by Cambridge University Press, is about polynomials and binary forms of
given discriminant, with applications to algebraic number theory, Diophantine
approximation and Diophantine geometry. There, we will apply the results
from the present book. The contents of these two books are an outgrowth of
research, done by the two authors since the 1970s.

The present book is aimed at anybody (graduate students and experts) with
basic knowledge of algebra (groups, commutative rings, fields, Galois theory)
and elementary algebraic number theory. For convenience of the reader, in part
I of the book we have provided some necessary background.
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Summary

We start with a brief historical overview and then outline the contents of
our book. Thue (1909) proved that if F ∈ Z[X, Y ] is a binary form (i.e., a
homogeneous polynomial) of degree at least 3 which is irreducible over Q and
if δ is a non-zero integer, then the equation

F (x, y) = δ in x, y ∈ Z

(nowadays called a Thue equation) has only finitely many solutions. To this end,
Thue developed a very original Diophantine approximation method concerning
the approximation of algebraic numbers by rationals, which was extended later
by Siegel, Dyson, Gelfond and Roth.

Thue’s result was generalized by Siegel (1921) as follows. Let K be an
algebraic number field of degree d with ring of integersOK , let F ∈ OK [X, Y ]
be a binary form of degree n > 4d2 − 2d such that F (1, 0) �= 0 and F (X, 1)
has no multiple zeros, and let δ be a non-zero element ofOK . Then the equation

F (x, y) = δ in x, y ∈ OK

has only finitely many solutions. This has the following interesting conse-
quence, which was not stated explicitly by Siegel, but which was implicitly
proved by him. Denote byO∗

K the group of units ofOK . Let a1, a2 be non-zero
elements of the number field K . Then the equation

a1x1 + a2x2 = 1 (1)

has only finitely many solutions in x1, x2 ∈ O∗
K . To prove this, choose an

integer n > 4d2 − 2d. By Dirichlet’s Unit Theorem, the group O∗
K is finitely

generated, and thus, any solution x1, x2 ∈ O∗
K of (1) can be written as xi = βiε

n
i

for i = 1, 2 with βi, εi ∈ O∗
K , such that βi may assume only finitely many

values. Thus, we get a finite number of Thue equations

a1β1ε
n
1 + a2β2ε

n
2 = 1,

each of which has only finitely many solutions in ε1, ε2.

xi
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xii Summary

Mahler (1933a) proved another generalization of Thue’s theorem. Let F ∈
Z[X, Y ] be a binary form of degree n ≥ 3 such that F (1, 0) �= 0 and F (X, 1)
has no multiple zeros, and let p1, . . . , pt be distinct primes. Then the equation

F (x, y) = ±pz1
1 · · ·pztt

(today called a Thue–Mahler equation) has only finitely many solutions in inte-
gers x, y, z1, . . . , zt with gcd(x, y) = 1. A consequence of this result, proved
by Mahler in a slightly different formulation, is as follows. Let a1, a2 be non-
zero rational numbers and let � be the multiplicative group generated by −1,
p1, . . . , pt . Then (1) has only finitely many solutions in x1, x2 ∈ �. The argu-
ment is similar to that above. By extending the set of primes p1, . . . , pt , we
may assume that the numerators and denominators of a1, a2 are composed of
primes from p1 · · ·pt . Then, by clearing denominators, we can rewrite (1) as

u+ v = w,

where u, v,w are integers, composed of primes from p1, . . . , pt , with
gcd(u, v,w) = 1. Choose n ≥ 3. Then we may write u as axn and v as byn,
where a, b, x, y are integers composed of primes from p1, . . . , pt and a, b are
from a finite set independent of x1, x2. Thus, equation (1) can be reduced to a
finite number of Thue–Mahler equations as above with F = aXn + bY n which
all have only finitely many solutions.

Lang (1960) considered equation (1) with unknowns x1, x2 taken from a
finitely generated multiplicative group, and was the first to realize the central
importance of this equation. He proved the general result that if a1, a2 are non-
zero elements from an arbitrary fieldK of characteristic 0 and � is an arbitrary
finitely generated multiplicative subgroup ofK∗, then (1) has only finitely many
solutions in elements x1, x2 ∈ �. Inspired by Siegel’s original result, equations
of type (1) with unknowns from a finitely generated multiplicative group are
called unit equations (in two unknowns), although the group � need not be the
unit group of a ring. The proofs of all results mentioned above are based on
extensions of Thue’s method, which are ineffective in the sense that they do
not provide a method to determine the solutions of the equations considered
above.

In the 1960s, A. Baker developed a new method in transcendence theory,
giving non-trivial effective lower bounds for linear forms in logarithms of
algebraic numbers. This turned out to be a very powerful tool to prove effective
finiteness results for Diophantine equations, that enable one to determine all
solutions of the equation, at least in principle. With this method, and extensions
thereof, it became possible to give explicit upper bounds for the heights of the
solutions of Thue equations and Thue–Mahler equations, and also for the
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Summary xiii

heights of the solutions of equations (1) in units of the ring of integers of a
number field or more generally, in S-units, these are elements in the number
field in whose prime ideal factorizations only prime ideals from a prescribed,
finite setS occur. Baker (1968b) obtained explicit upper bounds for the solutions
of Thue equations. His result was extended by Coates (1969) to Thue–Mahler
equations. For explicit upper bounds for the heights of the solutions of unit
equations and S-unit equations in two unknowns, see Győry (1972, 1973,
1974, 1979), and the many subsequent improvements discussed in Chapter 4.
The bounds enabled one to determine, at least in principle, all solutions. Since
the 1980s, practical algorithms have been developed, combining Baker’s theory
with the Lenstra–Lenstra–Lovász (LLL) lattice basis reduction algorithm and
enumeration techniques, which allow one to solve in practice concrete Thue
equations, Thue–Mahler equations and (S-) unit equations, see for instance de
Weger (1989), Wildanger (1997) and Smart (1998).

In the 1960s and early 1970s, Schmidt developed his higher dimensional gen-
eralization of the Thue–Siegel–Roth method, leading to his Subspace Theorem
in Schmidt (1972). Schlickewei (1977b) proved an extension of the Subspace
Theorem, involving both archimedean and non-archimedean absolute values.
Using this so-called p-adic Subspace Theorem, several authors obtained finite-
ness results for the number of soultions of unit equations in an arbitrary number
of unknowns, i.e., for linear equations

a1x1 + · · · + anxn = 1 in x1, . . . , xn ∈ �, (2)

where a1, . . . , an are non-zero elements, and � is a finitely generated multi-
plicative group in a field K of characteristic 0, see Dubois and Rhin (1976),
Schlickewei (1977a), Evertse (1984b), Evertse and Győry (1988b) and van der
Poorten and Schlickewei (1982, 1991). We mention that the p-adic Subspace
Theorem is ineffective, and so its consequences for equation (2) are ineffective.
It is still open to solve unit equations of the form (2) in more than two unknowns
effectively.

In part I of the book, consisting of the first three chapters, we have collected
some basic tools. Chapter 1 gives a collection of the results from elementary
algebraic number theory that we need throughout the book. In Chapter 2 we
recall some basic facts about algebraic function fields. These are used in Chap-
ters 7 and 8. In Chapter 3 we have stated without proof some fundamental
results from Diophantine approximation and transcendence theory. We have
included some versions of the Subspace Theorem, due to Schmidt, Schlick-
ewei and Evertse, and estimates of Matveev (2000) and Yu (2007) concerning
linear forms in logarithms, which are used in Chapters 4, 5 and 6.
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xiv Summary

Part II, consisting of the other chapters, is the main body of our book.
Chapter 4 provides a survey of effective results concerning unit equations in
two unknowns over number fields. We derive among others the best effective
upper bounds to date, established in Győry and Yu (2006), for the solutions of
equation (1) in S-units of a number field. For applications, we give the bounds
in completely explicit form. The main tools in the proofs are the results on
linear forms in logarithms mentioned above.

In Chapter 5 we address the problem of practically solving concrete equa-
tions of the form (1) in units and S-units. Here, we combine estimates for
linear forms in logarithms as mentioned in Chapter 3 with the LLL lattice basis
reduction algorithm and an enumeration process.

In Chapter 6, we give an overview of the ineffective theory of unit equations
in several unknowns. Among other things, we sketch a proof of the theorem
of Evertse, Schlickewei and Schmidt (2002), giving an explicit upper bound
for the number of those solutions of (2) for which the left side in (2) has no
vanishing subsum. The bound depends only on the number n of unknowns
and the rank of �. We also include a proof of the theorem of Beukers and
Schlickewei (1996) which gives a similar, but sharper, result for equations in
two unknowns. Further, we discuss some results giving lower bounds for the
number of solutions of unit equations.

In Chapter 7, we deal with analogues over function fields of characteristic 0
of some of the effective and ineffective results discussed in Chapters 4 and 6. In
particular, we present the Stothers–Mason abc-theorem due to Stothers (1981)
and Mason (1984) for algebraic functions, and a result of Evertse and Zannier
(2008) on the number of solutions of unit equations in two unknowns over
function fields, analogous to the result of Beukers and Schlickewei mentioned
above. Further, we give a brief overview of recent results on unit equations over
function fields of positive characteristic.

In Chapter 8, the effective results of Chapters 4 and 7 on S-unit equations in
two unknowns over number fields and over function fields are combined with
some effective specialization argument to prove a general effective finiteness
theorem, due to Evertse and Győry (2013), on the solutions of equation (1) in
units x1, x2 of an arbitrary, effectively given finitely generated integral domain
A over Z.

Chapter 9 deals with applications of unit equations to decomposable form
equations, which are higher dimensional generalizations of Thue and Thue–
Mahler equations. It is proved that unit equations in an arbitrary number of
unknowns are in a certain sense equivalent to decomposable form equations,
and in particular unit equations in two unknowns are equivalent to Thue equa-
tions. Further, a complete description of the set of solutions of decomposable
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Summary xv

form equations is presented. We give explicit upper bounds for the number
of solutions when this number is finite. The bounds do not depend on the
coefficients of the decomposable forms involved. We also discuss effective
results for some important classes of decomposable form equations, including
Thue equations, discriminant form equations, and certain norm form equations.
The presented results have many applications, especially to algebraic number
theory.

The results on unit equations have many further applications to other Dio-
phantine problems. In Chapter 10 we have made a small selection. We give
among other things applications to prime factors of sums of integers, additive
unit representations in integral domains, dynamics of polynomial maps, arith-
metic graphs, irreducible polynomials, equations and inequalities involving
discriminants and resultants, power integral bases in number fields, Diophan-
tine geometry, exponential-polynomial equations, and transcendence theory.

As was mentioned in the Preface, a number of applications of the results
of the present book are given in our second book Discriminant Equations in
Diophantine Number Theory.

At the end of several chapters there are Notes in which some historical
remarks are made and further related results, generalizations and applications
are mentioned.
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