Contents

List of Figures xi
List of Tables xvii
Preface xix

1 Introduction 1
 1.1 Introduction 1
 1.2 Linear Elastic Fracture Mechanics 1
 1.3 Elastic Plastic or Yielding Fracture Mechanics 2
 1.4 Mixed Mode Fracture 2
 1.5 Fatigue Crack Growth 3
 1.6 Computational Fracture Mechanics 4
 1.7 Scope of the Book 4
 References 5

2 Linear Elastic Fracture Mechanics 6
 2.1 Introduction 6
 2.2 Calculation of Theoretical Strength 6
 2.3 Griffith’s Explanation Based on Stress Concentration 8
 2.4 Griffith’s Theory of Brittle Fracture 10
 2.4.1 Irwin–Orowan Modification 12
 2.5 Stress Intensity Factor (SIF) Approach 13
 2.5.1 Relationship between G and K 17
 2.6 Concepts of Strain Energy and Potential Energy Release Rates 22
 2.6.1 Crack Extension Under Load Control (Soft Loading) 22
 2.6.2 Crack Extension Under Displacement Control (Hard Loading) 23
 2.7 Irwin Plastic Zone Size Correction 24
 2.8 Dugdale–Barenblatt Model for Plastic Zone Size 26
 2.9 Crack-Tip Plastic Zone Shape 27
 2.9.1 Mode I Plastic Zone 28
 2.9.2 Plane Strain Constraint 30
 2.9.3 Mode II and Mode III Plastic Zones 30
 2.10 Triaxiality at Crack Front 31
 2.11 Thickness Dependence of Fracture Toughness K_C 33
Contents

2.12 Design Applications 34
Appendix 2.1 SIFs for Various Configurations 48
Exercise 54
References 60

3 Determination of Crack-Tip Stress Field 65
3.1 Introduction 65
3.2 Airy Stress Function Approach 65
3.3 Kolosoff–Muskhelishvili Potential Formulation 68
3.4 Examples on Analytic and Stress Functions 68
3.5 Westergaard Stress Function Approach 69
3.5.1 Mode I Crack-Tip Field 71
3.5.2 Mode II Crack-Tip Field 75
3.6 Mode III Solution 77
3.7 Williams’ Eigenfunction Expansion for Mode I 80
3.8 Williams’ Eigenfunction Expansion for Mode II and Mixed Mode 83
Exercise 84
References 84

4 Crack Opening Displacement, J Integral, and Resistance Curve 86
4.1 Introduction 86
4.2 Crack Opening Displacement 87
4.3 Special Integrals 89
4.4 Rice’s Path-Independent Integral J 91
4.5 J As Potential Energy Release Rate 92
4.6 Graphical Representation of J for Non-linear Elastic Case 94
4.7 Resistance Curve 95
4.8 Stability of Crack Growth 97
Exercise 100
References 101

5 Determination of Stress Intensity Factors 102
5.1 Introduction 102
5.2 Analytical Methods 103
Table of Contents

5.2.1 Boundary Collocation Method 108
5.2.2 Green’s Function Approach 108
5.2.3 Method of Superposition 109
5.2.4 Weight Function Method 110

5.3 Numerical Technique: Finite Element Method 113
 5.3.1 Displacement and Stress-based Methods for Extraction of SIFs 118
 5.3.2 Energy-based Methods for Determination of SIFs 120

5.4 FEM-Based Calculation of G Associated with Kinking of Crack 138

5.5 Other Numerical Methods 139

5.6 Experimental Methods
 5.6.1 Strain Gauge Technique 140
 5.6.2 Photoelasticity 142

Exercise 143
References 146

6 Mixed Mode Brittle Fracture 152
 6.1 Introduction 152
 6.2 Theory based on Potential Energy Release Rates 153
 6.3 Maximum Tangential Stress Criterion 154
 6.4 Maximum Tangential Principal Stress Criterion 157
 6.5 Strain Energy Density Criterion 159

Exercise 163
References 166

7 Fatigue Crack Growth 168
 7.1 Introduction 168
 7.2 Fatigue Crack Growth Rate under Constant Amplitude Loading 170
 7.3 Factors Affecting Fatigue Crack Propagation 174
 7.4 Crack Closure 174
 7.5 Life Estimation Using Paris Law 176
 7.6 Retardation of Crack Growth Due to Overloads 178
 7.7 Variable Amplitude Cyclic Loading
 7.7.1 Rainflow Cycle Counting 190
 7.8 Closure 192
Appendix 7.1 Fortran Program for Crack Growth Calculations 192
Exercise 196
References 199

8 Elastic Plastic Fracture Mechanics 202
8.1 Introduction 202
8.2 Briefs on Plasticity 202
 8.2.1 Incremental Theories of Plasticity 207
8.3 Crack Opening Displacement Criterion 208
8.4 Mode III Crack-Tip Field for Elastic-Perfectly-Plastic Materials 209
8.5 Relationship between J and COD 212
8.6 Fracture Assessment Diagram and R-6 Curve 213
8.7 Mode I Crack-Tip Field 216
 8.7.1 Rice–Rosengren Analysis 216
 8.7.2 Hutchinson’s Analysis 221
8.8 Experimental Determination of J 226
8.9 Alternative Methods for Measuring J 227
8.10 Crack-Tip Constraints: T Stress and Q Factor 230
8.11 Crack Propagation and Crack Growth Stability 233
8.12 Engineering Estimates of J 237
8.13 Closure 245
Exercise 254
References 254

9 Experimental Measurement of Fracture Toughness Data 257
9.1 Introduction 257
9.2 Measurement of Plane Strain Fracture Toughness K_{IC} 257
9.3 Measurement of J_{IC} 263
9.4 Measurement of Critical COD δ_C 267
9.5 Measurement of K-Resistance Curve 269
 9.5.1 Linear Elastic Material 269
 9.5.2 Elastic Plastic Material 270
References 272

Index 273