Index

active decaps
 boost factor, 225
 charge dumping, 223
 charge restoring, 224
 energy loss, 224
 adaptive clocking, 227
additive noise, 281–282, 284
algorithm, 340, 343, 348–349, 352, 354, 368
Allan variance, 288
all-digital PLL, 99
amplifier class, 263
 class A, 264–265
 class B, 264, 267, 309
 class D, 264
 class E, 264
 class G, 264
 class H, 264
analog-to-digital converter (ADC), 135
asymmetric drain-source doped (AD) FinFET, 28
asymmetric drain-spacing-extended (ADSE) FinFET, 27
asymmetric oxide thickness (ATox) FinFET, 29
back-gate bias, 41
Bayesian least-squares fit, 267
bias temperature instability (BTI), 17
 Arhenius equation, 201
 impact on SRAM read stability, 202
 impact on SRAM write stability, 202
 NBTI, 201
 PBTI, 201
 sensor, 238
bilinear transform, 368, 370, 373
block head switch, 229
block-structured model, 262
BTI. See bias thermal instability
buck regulator, 207
 bridge, 207
 capacitor, 207
 duty cycle, 207
 inductor, 207
 low-pass filter, 207
multi-phase operation, 209
 switching frequency, 207
buffer, 336, 352
bulk-silicon, 23
butterfly curve, 40
bypass capacitors. See decoupling capacitors
cable modem (CM), 256
cable television (CATV), 256
calibration, 135, 138
 background, 135, 138, 148, 245
digital-domain, 137
equalization-based, 142
foreground, 135, 245
linearity, 143
pseudo-background, 139
radix, 141
capacitance boosting, 225–226
carrier mobility, 8, 66
channel hot carrier (CHC), 17
chip area, 324, 330, 336, 341–343, 346, 350, 361,
 380, 386
clock gating, 197
compact model, 32, 34
comparator, 329, 334, 336, 347–348, 353, 357–358,
 361
compensation, 324–325, 380, 386, 388
conduction losses, 210
correlation-based parameter extraction, 148
critical-path synthesis, 204
critical paths
 activation, 206
gate-dominated, 206
interconnect-dominated, 206
monitoring, 206
CTAT voltage, 237
current quantization, 331–332, 335–337, 347
current sensor, 327, 331–332, 346, 348, 351,
 354–355, 358–359, 361, 363, 365–366, 368,
current sources, 347–348, 355

cut-off frequency, 3

DCMC. See digital current-mode controller
decaps. See decoupling capacitors
decoupling capacitors, 221

active, 223

passive, 221
delay-cell, 337–338
delay-line ADC, 328
delay synthesizer, 228
device simulation, 32, 34
differential nonlinearity (DNL), 265, 305
digital assistance, 135, 138, 158, 160, 253
digital calibration, 243
digital loop filter, 103, 108, 114, 116
digital PLL, 99–103, 105, 114, 117
digital predistortion, 254

digital pulse-width modulator, 326, 337, 386, 389
digital-to-time converter (DTC), 105
digital voltage-mode controllers, 325
digitally controlled oscillator (DCO), 100
direct conversion. See zero-IF
distortion canceler, 297
dither, 251
drain avalanche hot carrier (DAHC), 17
drain-induced barrier lowering (DIBL), 7, 21
droop detection, 222
duty ratio, 323–324, 331, 339, 341, 351–352, 360

FDSOI. See digital voltage-mode controllers
dynamic element matching (DEM), 251
electromigration, 201, 229
equalization-based parameter extraction, 154
equivalent oxide thickness (EOT), 76
extreme thin decaps, 223

FDSOI, 56

analog design, 87

backbias, 87

body biasing, 83
depleted substrate transistor (DST), 60

extremely thin SOI (ETSOI), 60

hybrid bulk-FDSOI, 88

scalability, 88

silicon on thin BOX (SOTB), 60

SRAM implementation, 85

ultra thin SOI (UTSOI), 60

ultra-low-voltage design, 84

ultra-thin body (UTB), 60

ultra-thin body and BOX (UTBB or UT2B), 60

FDSOI structure, 58

FDSOI substrate, 71

feedback controller, 323

FinFET, 70

finite-impulse asymmetries, 48

moving-average, 262

FIR. See finite-impulse response

flash ADC, 329

flying capacitor, 219

partial, 219

frequency compensation of LDO, 216

frequency-division duplex (FDD), 252

frequency-locking, 384–385

Friis formula, 257

fully depleted silicon-on-insulator (FDSOI). See

FDSOI
gate-induced drain leakage (GIDL), 21, 59
gross distortion, 267

Hammerstein model, 262

harmonic-reject mixer, 295

high-κ/metal gate, 60

high-pass filter, 364, 368, 370, 373, 379

hot carrier injection (HCI), 17, 201

sensor, 238

HRM. See harmonic-reject mixer

IIR. See infinite-impulse response

inductor current-sensing, 327, 344, 346–347, 349–350, 352, 361

infinite-impulse response, 263

autoregressive, 263

inrush current, 228

charge sharing, 230

reduction, 232

ringing, 231

integer-N, 120, 126

integral nonlinearity (INL), 266, 305

intercept point, 268

intermodulation distortion, 260

inter-sample interference (ISI), 305

intrinsic capacitance, 221

IQ mismatch, 186

IQ mismatch calibration, 188

ITRS (International Technology Roadmaps for Semiconductors), 312

Johnson figure-of-merit, 280

Kalman-Bucy filters, 250

Kelvin sensing, 238
Landauer limit, 312
lane imbalance, 267, 276, 299–300, 314
LDO. See low-dropout voltage regulator
leakage control, 198
line-edge roughness, 13
line regulation, 212
linear combination, 343
lithography, 12
LO leakage, 190
load current balancing, 209
look-up table, 340
loop filter, 248
low-dropout voltage regulator, 211
dominant pole, 215
feedback loop, 213
feedback resistors, 213
headroom, 212
output resistance, 214
stability, 216
transfer function, 214
low-pass filter, 364, 368, 370, 373
MDAC equalizer, 305–306
memory polynomial model, 262
Miller effect, 215, 217, 226
Moore’s Law, 1, 9, 312
MTCMOS, 200–201, 229–230, 232
multiplicative noise, 281
multi-VT, 81
NBTI, 17
NF. See noise figure
noise figure, 256
noise figure calibration, 192
noise power ratio (NPR), 268
noise-shaping, 339
offset double conversion, 157, 163
off-time, 362, 377–378, 384, 387
on-time, 378, 384, 387
parallel ADC, 299
partially depleted SOI (PDSOI), 58–59
pass transistor, 211
gate-to-drain capacitance, 213
intrinsic gain, 213
output resistance, 212
sizing, 212
transconductance, 212
PBTI, 17
peak-to-average power ratio (PAPR), 257
peak-to-averager ratio. See peak-to-average power ratio
phase-locked loops (PLLs), 283
phase noise, 281, 283–288
pickup canceler, 309
PLL self locking, 194
point-of-load regulation, 207
pole, 327, 369–371
power
dynamic, 197, 200, 232
leakage, 198–201, 222, 229, 234
power-delivery network, 199, 230
power gating, 198, 200
power MOSFET, 323, 326, 332, 344–346, 357, 366, 390
power-supply noise due to charge sharing, 230
power switch interaction with ESD clamps, 234
PRBS injection, 148
predistortion, 244, 303
probability density function (PDF), 263, 266
process corners, 198
process variabilities, 12
process variation, 175
propagation delay, 338
PTAT voltage, 237
QAM. See quadrature amplitude modulation
quadrature amplitude modulation, 282
quasi-Monte Carlo, 43
random dopant fluctuation, 5, 14, 22
random telegraph noise (RTN), 18
rapid thermal anneal (RTA), 78
raised source/drain (RSD), 62
razor. See resilient design
RC filter, 362
RC network, 364
reaction-diffusion model, 18
reactive ion etch (RIE), 75
receiver, 252
direct sampling, 252
heterodyne, 252
noise figure, 253, 258
selectivity, 253, 257
sensitivity, 255, 257
receiver image, 276
receiver linearity, 185
redundancy dither, 167
redundant double conversion, 164
reference-ADC equalization, 154
regression line, 358
replicas, 247
resilient design
razor, 206
ring oscillators
speed sensor, 204
ripple-based analog controllers, 362
SAR ADC, 158
sub-binary, 160
scaling, 197
scaling theory, 2
Schreier figure-of-merit. See Schreier FOM
Schreier FoM, 311
selectivity, 256, 283
SenFET, 346–349, 355, 357, 385
short-channel control, 70
short-channel effect, 5, 21
shuffling, 251
signal constellation, 282
silicon odometers, 235
simultaneous multi-stage calibration, 158
software-defined radios (SDR), 252
spectral regrowth, 260
split-ADC equalization, 155
SRAM
access time, 202
read stability, 202
write stability, 202
stability, 324, 331
static noise margin (SNM), 40
statistical static timing analysis (SSTA), 43
step-down converter. See buck regulator
STL, 74
STI stress, 16
straight-ruler replica, 248
strain engineering, 67
subthreshold slope, 8
successive approximation, 329, 332, 335, 348
super-steep retrograde well (SSRW), 81
switched-capacitor converters
2-to-1 topology, 217
3-to-2 topology, 220
output resistance, 219
resistive losses, 220
switching frequency, 219
switching losses, 210
switching voltage regulator. See buck regulator
TDDB. See time-dependent dielectric breakdown
temperature limits, 201, 235
temperature sensors, 235
thermal budget, 235
thermal noise, 3, 242
thermal resistance, 200
threshold voltage, 200
time constant, 365–366
time-dependent dielectric breakdown (TDBB), 17, 199, 201
time-division duplex (TDD), 252
time-multiplex, 330, 333
time-to-digital converter, 103, 109
timing error
correction, 206
detection, 206
transconductance, 3
transfer curve, 354–356
transient enhanced diffusion (TED), 78
transient response, 327–328, 330, 344, 362, 376, 380, 386
transmit canceler, 308
transmitter, 277
direct sampling, 277
heterodyne, 277
transmitter actuators, 176
transmitter linearity, 184
transmitter power, 182
transmitter sensors, 178
trap-detrap model, 18
Trigate FET, 21–22, 24
variability
die-to-die, 198
implant dosage, 198
line-edge roughness, 198
multiple patterning, 198
random, 198
random dopant fluctuations, 198
systematic variations, 198
within-die, 198
velocity saturation, 8
Verilog code, 343, 354, 373, 380, 386
virtual power rails, 229
voltage quantization, 331–334
voltage ripple, 208–209, 221
voltage scaling, 197
closed loop, 204
open loop, 203
Volterra series, 260
well proximity effect, 16
Wiener-Hammerstein model, 262
Wiener model, 262
workfunction, 26, 29, 35
zero, 323, 326, 336, 349, 369, 373, 376, 384, 392–393
zero-IF, 290
Z-transform, 370
ΔΣ ADC, 328–330