Digitally-Assisted Analog and Analog-Assisted Digital IC Design

Achieve enhanced performance with this guide to cutting-edge techniques for digitally-assisted analog and analog-assisted digital integrated circuit design.

- Discover how architecture and circuit innovations can deliver improved performance in terms of speed, density, power, and cost.
- Learn about practical design considerations for high-performance scaled CMOS processes, FinFET devices and architectures, and the implications of FD SOI technology.
- Get up to speed with established circuit techniques that take advantage of scaled CMOS process technology in analog, digital, RF, and SoC designs, including digitally-assisted techniques for data converters, DSP-enabled frequency synthesizers, and digital controllers for switching power converters.

With detailed descriptions, explanations, and practical advice from leading industry experts, this is an ideal resource for practicing engineers, researchers, and graduate students working in circuit design.

Xicheng Jiang is a Distinguished Engineer, and Director of Electrical Design Engineering, at Broadcom Corporation. He is a former Associate Editor of IEEE Transactions on Circuits and Systems II, holds more than 30 issued and pending US patents, and is a Fellow of the IEEE.
Digitally-Assisted Analog and Analog-Assisted Digital IC Design

XICHENG JIANG
Broadcom Corporation
CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge. It furthers the University’s mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107096103

© Cambridge University Press 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Jiang, Xicheng, 1968–

Digitally-assisted analog and analog-assisted digital IC design / Xicheng Jiang, Broadcom Corporation.

pages cm

ISBN 978-1-107-09610-3 (Hardback)

TK7874.65.J53 2015

621.3815–dc23 2015006509

ISBN 978-1-107-09610-3 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

© in this web service Cambridge University Press

www.cambridge.org
To Liu, Lan, and Xiao
Contents

List of Contributors xiii
Preface xv

1 CMOS technology scaling and its implications 1
1.1 Scaling theory and technology roadmap 2
1.2 Short-channel effects 5
 1.2.1 Threshold voltage dependence on channel length 6
 1.2.2 Drain-induced barrier lowering (DIBL) 7
 1.2.3 Velocity saturation 8
1.3 Scaling impact on power consumption 9
1.4 Parasitic elements in front- and back-end processes 11
1.5 Process variabilities 12
1.6 Other implications in advanced processes 15
 1.6.1 Layout-dependent performance variation 15
 1.6.2 Reliability concerns 17
References 18

2 FinFETs: from devices to architectures 21
2.1 Introduction 21
2.2 FinFETs 23
 2.2.1 FinFET classification 25
 2.2.2 Process variations 29
2.3 FinFET device characterization 32
 2.3.1 Process simulation 33
 2.3.2 Device simulation 33
 2.3.3 Compact models 34
2.4 FinFET standard cells 34
 2.4.1 SG/IG INV 35
 2.4.2 SG/IG NAND2 36
 2.4.3 ASG logic gates 36
 2.4.4 SG/IG/ASG latches and flip-flops 37
 2.4.5 SRAM 39
 2.4.6 DRAM 42
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 Circuit-level analysis</td>
<td>43</td>
</tr>
<tr>
<td>2.5.1 Analysis</td>
<td>43</td>
</tr>
<tr>
<td>2.5.2 Optimization</td>
<td>43</td>
</tr>
<tr>
<td>2.5.3 Novel interconnect structures and logic synthesis</td>
<td>43</td>
</tr>
<tr>
<td>2.6 Architecture-level analysis</td>
<td>45</td>
</tr>
<tr>
<td>2.6.1 FinFET-based caches</td>
<td>45</td>
</tr>
<tr>
<td>2.6.2 FinFET-based NoCs</td>
<td>45</td>
</tr>
<tr>
<td>2.6.3 FinFET-based multicore processors</td>
<td>46</td>
</tr>
<tr>
<td>2.7 Conclusion</td>
<td>48</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>49</td>
</tr>
<tr>
<td>References</td>
<td>49</td>
</tr>
<tr>
<td>3 FDSOI technology and its implications for analog and digital design</td>
<td>56</td>
</tr>
<tr>
<td>3.1 CMOS scaling and FDSOI structure</td>
<td>56</td>
</tr>
<tr>
<td>3.1.1 FDSOI structure</td>
<td>58</td>
</tr>
<tr>
<td>3.2 FDSOI device design</td>
<td>61</td>
</tr>
<tr>
<td>3.2.1 Performance</td>
<td>61</td>
</tr>
<tr>
<td>3.2.2 Parasitic resistance</td>
<td>63</td>
</tr>
<tr>
<td>3.2.3 Parasitic capacitance</td>
<td>64</td>
</tr>
<tr>
<td>3.2.4 Carrier mobility and strain engineering</td>
<td>66</td>
</tr>
<tr>
<td>3.2.5 Desired short-channel control</td>
<td>70</td>
</tr>
<tr>
<td>3.3 FDSOI manufacturing challenges and solutions</td>
<td>71</td>
</tr>
<tr>
<td>3.3.1 FDSOI substrates</td>
<td>71</td>
</tr>
<tr>
<td>3.3.2 Manufacturing challenges</td>
<td>74</td>
</tr>
<tr>
<td>3.4 Circuit design in FDSOI</td>
<td>80</td>
</tr>
<tr>
<td>3.4.1 Multi-(V_T) options in FDSOI</td>
<td>80</td>
</tr>
<tr>
<td>3.4.2 Body biasing in FDSOI</td>
<td>83</td>
</tr>
<tr>
<td>3.4.3 Ultra-low-voltage design in FDSOI</td>
<td>84</td>
</tr>
<tr>
<td>3.4.4 SRAM implementation</td>
<td>85</td>
</tr>
<tr>
<td>3.4.5 Implications for analog designs</td>
<td>87</td>
</tr>
<tr>
<td>3.4.6 Hybrid bulk-FDSOI integration</td>
<td>88</td>
</tr>
<tr>
<td>3.5 FDSOI scalability and global landscape</td>
<td>88</td>
</tr>
<tr>
<td>3.5.1 Global FDSOI landscape</td>
<td>92</td>
</tr>
<tr>
<td>References</td>
<td>92</td>
</tr>
<tr>
<td>4 Challenges and emerging trends of DSP-enabled frequency synthesizers</td>
<td>98</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>98</td>
</tr>
<tr>
<td>4.1.1 Overheads in digital PLL designs</td>
<td>100</td>
</tr>
<tr>
<td>4.2 DPLL architecture</td>
<td>102</td>
</tr>
<tr>
<td>4.2.1 Fractional-(N) DPLL architectures</td>
<td>102</td>
</tr>
<tr>
<td>4.2.2 Integer-(N) DPLL architectures</td>
<td>106</td>
</tr>
<tr>
<td>4.3 DPLL building blocks</td>
<td>106</td>
</tr>
<tr>
<td>4.3.1 Digitally controlled oscillators</td>
<td>107</td>
</tr>
<tr>
<td>4.3.2 Time-to-digital converter</td>
<td>109</td>
</tr>
<tr>
<td>4.3.3 Loop filter</td>
<td>114</td>
</tr>
</tbody>
</table>
4.4 Emerging techniques beyond analog PLL capability: adaptive
spur cancellation

4.5 Design examples
4.5.1 DPLL for baseband clocking in 65 nm CMOS
4.5.2 DPLL for LO synthesis in 65 nm CMOS

4.6 Conclusion

References

5 Digitally-assisted design of data converters

5.1 Overview and historic remarks
5.1.1 Background vs. foreground calibration
5.1.2 Digital-domain calibration
5.1.3 History of background calibration

5.2 Linearity calibration of pipelined ADC
5.2.1 The error model
5.2.2 Error-parameter identification

5.3 Linearity calibration of SAR ADC
5.3.1 The error model of sub-binary SAR ADC
5.3.2 Error-parameter identification

5.4 Convergence speed of background calibration

References

6 CMOS self-healing techniques for calibration and optimization of mm-wave
transceivers

6.1 Challenges of process variation at mm-wave

6.2 Actuators, sensors, and self-healing techniques for optimizing
transmitter output power and transceiver linearity
6.2.1 Transmitter actuators
6.2.2 Transmitter feedback sensors
6.2.3 Transmitter power and single-tone transmitter linearity
calibration
6.2.4 Two-tone transmitter linearity calibration with envelope
sensing
6.2.5 Two-tone receiver linearity calibration

6.3 Actuators, sensors, and self-healing techniques for optimizing
transceiver carrier distortion and noise
6.3.1 Sensors and actuators for calibration of IQ mismatch
6.3.2 Algorithms for calibration of IQ mismatch
6.3.3 Sensors and actuators for calibration of LO feed-through
6.3.4 Noise estimation and calibration of the receiver

6.4 Calibration of mm-wave VCOs for wideband frequency synthesizers
6.4.1 Digitally controlled artificial dielectric (DiCAD) actuators
6.4.2 Self-locking algorithm for DiCAD-based PLLs

References
7 Analog-assisted digital design in mobile SoCs

7.1 Digital design challenges for mobile SoCs
7.1.1 Energy efficiency 197
7.1.2 Process variability 198
7.1.3 Power-supply noise 199
7.1.4 Thermal management 200
7.1.5 Aging 201

7.2 Adaptive voltage scaling 203
7.2.1 Open-loop voltage scaling 203
7.2.2 Closed-loop voltage scaling 203
7.2.3 Speed sensors 204
7.2.4 Critical-path synthesis 204
7.2.5 Error detection and correction 206

7.3 Voltage regulation 207
7.3.1 Buck regulator 207
7.3.2 Low-dropout regulator 211
7.3.3 Switched-capacitor converter 217

7.4 Voltage droop management 221
7.4.1 Voltage droop detection 222
7.4.2 Active decoupling 223
7.4.3 Adaptive clocking 227

7.5 Inrush current management 228
7.5.1 Power switches 229
7.5.2 Model for power-delivery network 230
7.5.3 Minimizing noise when turning a switch on or off 232

7.6 Temperature and aging sensors 235
7.6.1 Temperature sensors 235
7.6.2 Aging sensors 238

References 239

8 Digitally-assisted RF design techniques

8.1 Introduction 242

8.2 Overview of digitally-assisted correction strategies 243
8.2.1 Model-feedback block diagrams 244
8.2.2 Actuators 245
8.2.3 Sensors 246
8.2.4 Loop filters 248
8.2.5 Correction in receivers vs. transmitters 250
8.2.6 Dither and shuffling 251

8.3 Communication links and transceivers – block diagrams 251
8.3.1 Communication links 251
8.3.2 Receivers and transmitters 252

8.4 Dynamic range specifications 255
8.4.1 Sensitivity: noise limitation 255
8.14 Variable-dynamic-range front ends

8.15 Conclusion

Acknowledgements

References

9 Digital controllers for switching power converters

9.1 Basic operations of a buck converter system

9.2 Digital controllers versus analog controllers

9.2.1 Motivation for using a digital controller

9.2.2 Digital current-mode controllers versus digital voltage-mode controllers

9.3 Analog-to-digital converter for digital controllers

9.3.1 Common ADC for digital controllers

9.3.2 Design of time-multiplex ADC

9.4 Digital pulse-width modulator (DPWM)

9.5 Digital compensation network

9.5.1 DSP/FPGA/microcontroller approach

9.5.2 Look-up-table (LUT) approach

9.5.3 Custom-made digital circuit approach

9.5.4 Look-up-table with table reduction techniques

9.6 Inductor current-sensing for digital controllers

9.6.1 Conventional inductor current-sensing and quantization

9.6.2 Digital inductor current sensor

9.6.3 Measurement results and discussion

9.7 Advanced digital current-mode controllers (DCMCs)

9.7.1 Inductor current-sensing for ripple-based DC-DC converters

9.7.2 Analysis of the analog and digital inductor current sensor

9.7.3 Design and implementation of a digital inductor current sensor for ripple-based digital controllers

9.7.4 Measurement results and discussion

9.8 Summary

References

Appendix A

Appendix B

Index
List of Contributors

Debajit Bhattacharya
Princeton University
Princeton
New Jersey
USA

Man Pun Chan
Marvell Hong Kong Ltd.
Kowloon Bay
Hong Kong
China

Frank M. C. Chang
University of California, Los Angeles
Los Angeles
California
USA

Mike Shuo-Wei Chen
University of Southern California
Los Angeles
California
USA

Kangguo Cheng
IBM
Albany
New York
USA

Yun Chiu
The University of Texas at Dallas
Dallas
List of contributors

Texas
USA

Ray (Ramon) Gomez
Broadcom Corporation
Irvine
California
USA

Tetsuya Iizuka
University of Tokyo
Tokyo
Japan

Niraj K. Jha
Princeton University
Princeton
New Jersey
USA

Philip K. T. Mok
Hong Kong University of Science and Technology
Clear Water Bay
Hong Kong
China

Ali Khakifirooz
Cypress Semiconductor
Sunnyvale
California
USA

Martin Saint-Laurent
Qualcomm Inc.
Austin
Texas
USA

Adrian Tang
Jet Propulsion Laboratory
Pasadena
California
USA
Digitally-assisted analog and analog-assisted digital techniques are increasingly needed in future circuit and system designs, as FinFET and FDSOI replace planar CMOS technology at advanced process nodes of 20 nm and beyond. The intrinsic features of these new devices are lowering the barrier between the analog and the digital worlds, allowing unprecedented performance to be achieved by assisting digital circuits with analog techniques or analog circuits with digital techniques.

As CMOS technologies scale to smaller nodes, digital designs enjoy obvious benefits in terms of higher speed and lower power consumption. However, scaling doesn’t happen so readily or cleanly with analog designs. Analog circuits frequently make use of “digital assistance”, which allows simplification of the critical analog circuits that don’t scale easily. Digitally-assisted analog techniques, such as calibration, allow for considerable relaxation of the analog performance, which can be used for minimizing both area and power consumption. Another trend is the transition of traditional analog functions to the digital domain. Compared to their analog mixed-signal counterparts, all-digital implementations are scalable, insensitive to noise, and robust against process variations. On the other hand, driven by the worldwide demand for low-power application processors, dynamic voltage/frequency scaling (DVFS) and adaptive voltage scaling (AVS) are typically used to reduce energy consumption in mobile systems. DVFS and AVS are enabled for optimal power management by analog techniques that monitor the on-die process, voltage and temperature variations.

The objective of this book is to discuss practical design considerations in high-performance scaled CMOS processes, established circuit techniques that take advantage of scaled CMOS process technology in analog, digital, RF, and system-on-chip (SoC) designs, and the outlook for the future in the context of challenges and solutions.

The book consists of nine chapters. Chapter 1 overviews the history of transistor scaling in recent 20 years. Several traditional scaling implications like short-channel effects, followed by the ever-increasing impacts of process variation and parasitic elements are revisited. This chapter also introduces several design issues specific to the recent nano-scale transistors, which include well proximity, shallow trench isolation (STI) stress-induced performance variation, aging effects, and so on.

Chapter 2 presents FinFETs from devices to architectures. It surveys different types of FinFETs, various FinFET asymmetries and their impact, and novel logic-level and architecture-level trade-offs. It also reviews analysis and optimization tools that are available for characterizing FinFET devices, circuits, and architectures.
Chapter 3 starts with an introduction of fully depleted silicon on insulator (FDSOI) devices. The chapter focuses on the advantages and the challenges in analog and digital design of FDSOI. Implementation of FDSOI technology in high-volume manufacturing (HVM) is then discussed along with the recent progress in improving FDSOI device performance and design for mobile applications. The competition and augmentation of FDSOI along with device architectures such as FinFETs are discussed. Finally, the technology roadmap for extending FDSOI beyond 10 nm in conjunction with future material and device innovations is proposed.

Chapter 4 takes a detailed look at the recent trend of DSP-enabled frequency synthesizers and its challenges. The basic principles and overheads of such phase lock loop (PLL) architectures are identified. Moreover, various emerging circuit and algorithmic techniques that leverage this digital intensive architecture are described.

Chapter 5 describes several digital-processing techniques to enhance the raw analog performance of pipeline and SAR ADCs. These techniques address most of the analog circuit metrics such as linearity, timing accuracy, component matching and when non-ideal their impact on the overall converter performance. To some extent, these works demonstrate that digitally-assisted techniques can be either more power-efficient or simpler to implement (or both) than their conventional counterparts.

Chapter 6 discusses the challenges of process variation that confront mm-wave transceivers in terms of attaining suitable yield and RF performance for commercialization, and looks at self-healing techniques that can be incorporated into the design of RF front ends to mitigate these effects. Specifically discussed will be self-healing techniques for optimizing transmitter output power, self-healing techniques for optimizing linearity and distortion, and finally self-healing techniques for synthesizer operation.

Chapter 7 gives an overview of some of the main digital design challenges for mobile SoCs in advanced process nodes, including low-power operation, process variability, power-supply noise, heat management, and aging. It describes how critical-path monitors and process sensors can be used to lower the supply voltage in the presence of inter-die and intra-die process variations. It presents the voltage regulation techniques that are commonly used for mobile SoCs or that will be particularly suitable for on-chip integration in the future. Obviously, voltage regulation can reduce, but not completely eliminate, the power-supply noise. Because of this, the techniques used to manage the residual noise, including droop detection and adaptive clocking, or to avoid generating too much noise when turning power switches on or off are discussed in detail. Finally, the chapter discusses mixed-signal techniques to design temperature and aging sensors.

Chapter 8 presents digitally-assisted RF techniques, and categorizes architectures and algorithms in use. The relationship between RF systems and analog circuit performance metrics is explored carefully. This step is essential to properly identify the most critical analog impairments and to properly guide design trade-offs between potential mitigation strategies. Hopefully, the reader will find value in this background system-level material before a discussion of detailed circuit design.

Chapter 9 starts with the basic operations of a switching power converter, the converter systems’ parameters, modes, and control methodologies. The three main
functional blocks of a digital controller for a switching power converter, i.e., ADC, digital compensation, and digital pulse-width modulator, are discussed in detail. The rest of the sections in this chapter go through different existing implementations of these three functional blocks. A literature review of existing digital controllers for buck converter systems is also given. This helps the reader to weigh up the pros and cons of the existing approaches and how the digital controllers are actually designed.

I am most grateful for these vital contributions. The short timescale for producing this book made considerable demands on the authors and many of them put in a tremendous effort in the final rush to get material ready. Their professionalism and dedication will be long remembered.

I would also like to thank the staff at Cambridge University Press, particularly Dr. Julie Lancashire, Katherine Law, Heather Brolly, and Sarah Marsh, for their help.

Finally, I want to thank my family for their tolerance, understanding, and support.

Xicheng Jiang

Los Angeles, December 2014