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Fitting functions to data

1.1 Exact fitting

1.1.1 Introduction

Suppose we have a set of real-number data pairs xi, yi, i = 1, 2, . . . , N. These
can be considered to be a set of points in the xy-plane. They can also be thought
of as a set of values y of a function of x; see Fig. 1.1. A frequent challenge is
to find some kind of function that represents a “best fit” to the data in some
sense. If the data were fitted perfectly, then clearly the function f would have
the property

f (xi) = yi, for all i = 1, . . . , N. (1.1)

When the number of pairs is small and they are reasonably spaced out in x,
then it may be reasonable to do an exact fit that satisfies this equation.

1.1.2 Representing an exact fitting function linearly

We have an infinite choice of possible fitting functions. Those functions must
have a number of different adjustable parameters that are set so as to adjust the
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Figure 1.1 Example of data to be fitted with a curve.
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2 Fitting functions to data

function to fit the data. One example is a polynomial,

f (x) = c1 + c2x + c3x2 + . . . + cNxN−1. (1.2)

Here the ci are the coefficients that must be adjusted to make the function fit
the data. A polynomial whose coefficients are the adjustable parameters has a
very useful property that it is linearly dependent upon the coefficients.

In order to fit eqs. (1.1) with the form of eq. (1.2) requires that N
simultaneous equations be satisfied. Those equations can be written as an N×N
matrix equation as follows:⎛

⎜⎜⎜⎝
1 x1 x2

1 . . . xN−1
1

1 x2 x2
2 . . . xN−1

2
. . .

1 xN x2
N . . . xN−1

N

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝

c1

c2

. . .

cN

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

y1

y2

. . .

yN

⎞
⎟⎟⎠ (1.3)

Here we notice that in order for this to be a square matrix system we need the
number of coefficients to be equal to the number of data pairs N.

We also see that we could have used any set of N functions fi as fitting
functions, and written the representation:

f (x) = c1f1(x) + c2f2(x) + c3f3(x) + . . . + cNfN(x) (1.4)

and then we would have obtained the matrix equation⎛
⎜⎜⎝

f1(x1) f2(x1) f3(x1) . . . fN(x1)

f1(x2) f2(x2) f3(x2) . . . fN(x2)

. . .

f1(xN) f2(xN) f3(xN) . . . fN(xN)

⎞
⎟⎟⎠
⎛
⎜⎜⎝

c1

c2

. . .

cN

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

y1

y2

. . .

yN

⎞
⎟⎟⎠ (1.5)

This is the most general form of representation of a fitting function that varies
linearly with the unknown coefficients. The matrix1 we will call S. It has
elements Sij = fj(xi)

1.1.3 Solving for the coefficients

When we have a matrix equation of the form Sc = y, where S is a square
matrix, then provided that the matrix is non-singular, that is, provided its

1 Throughout this book, matrices and vectors in abstract multidimensional space are denoted by
upright bold font. Vectors in physical three-dimensional space are instead denoted by italic bold
font.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-09567-0 - A Student’s Guide to Numerical Methods
Ian H. Hutchinson
Excerpt
More information

http://www.cambridge.org/9781107095670
http://www.cambridge.org
http://www.cambridge.org


1.2 Approximate fitting 3
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Figure 1.2 Result of the polynomial fit.

determinant is non-zero, |S|�= 0, it possesses an inverse S−1. Multiplying on
the left by this inverse we get:

S−1Sc = c = S−1y. (1.6)

In other words, we can solve for c, the unknown coefficients, by inverting the
function matrix, and multiplying the values to be fitted, y, by that inverse.

Once we have the values of c we can evaluate the function f (x) (eq. 1.2) at
any x-value we like. Fig. 1.2 shows the result of fitting a fifth order polynomial
(with six terms including the 1) to the six points of our data. The line goes
exactly through every point. But there’s a significant problem that the line is
unconvincingly curvy near its ends.2 It’s not a terribly good fit.

1.2 Approximate fitting

If we have lots of data which have scatter in them, arising from uncertainties
or noise, then we almost certainly do not want to fit a curve so that it goes
exactly through every point. For example, see Fig. 1.3. What do we do then?
Well, it turns out that we can use almost exactly the same approach, except
with different number of points (N) and terms (M) in our linear fit. In other
words we use a representation

f (x) = c1f1(x) + c2f2(x) + c3f3(x) + . . . + cMfM(x), (1.7)

in which usually M < N. We know now that we can’t fit the data exactly. The
set of equations we would have to satisfy to do so would be

2 This problem with polynomial fitting is sometimes called Runge’s phenomenon.
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4 Fitting functions to data
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Figure 1.3 A cloud of points with uncertainties and noise, to be fitted with a
function.

⎛
⎜⎜⎝

f1(x1) f2(x1) f3(x1) . . . fM(x1)

f1(x2) f2(x2) f3(x2) . . . fM(x2)

. . .

f1(xN) f2(xN) f3(xN) . . . fM(xN)

⎞
⎟⎟⎠
⎛
⎜⎜⎝

c1

c2

. . .

cM

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

y1

y2

. . .

yN

⎞
⎟⎟⎠ , (1.8)

in which the function matrix S is now not square but has dimensions N × M.
There are not enough coefficients cj to be able to satisfy these equations
exactly. They are over-specified. Moreover, a non-square matrix doesn’t have
an inverse.

But we are not interested in fitting these data exactly. We want to fit some
sort of line through the points that best fits them.

1.2.1 Linear least squares

What do we mean by “best fit”? Especially when fitting a function of the linear
form eq. (1.7), we usually mean that we want to minimize the vertical distance
between the points and the line. If we had a fitted function f (x), then for each
data pair (xi, yi), the square of the vertical distance between the line and the
point is (yi − f (xi))

2. So the sum, over all the points, of the square distance
from the line is

χ2 =
∑

i=1,N

(yi − f (xi))
2. (1.9)

We use the square of the distances in part because they are always positive.
We don’t want to add positive and negative distances, because a negative
distance is just as bad as a positive one and we don’t want them to cancel
out. We generally call χ2 the “residual”, or more simply the “chi-squared”. It
is an inverse measure of goodness of fit. The smaller it is the better. A linear
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1.2 Approximate fitting 5

least-squares problem is: find the coefficients of our function f that minimize
the residual χ2.

1.2.2 SVD and the Moore–Penrose pseudo-inverse

We seem to have gone off in a different direction from our original way to
solve for the fitting coefficients by inverting the square matrix S. How is that
related to the finding of the least-squares solution to the over-specified set of
equations (1.8)?

The answer is a piece of matrix magic! It turns out that there is (contrary to
what one is taught in an elementary matrix course) a way to define the inverse
of a non-square matrix or of a singular square matrix. It is called the (Moore–
Penrose) pseudo-inverse. And once found it can be used in essentially exactly
the way it was for the non-singular square matrix in the earlier treatment. That
is, we solve for the coefficients using c = S−1y, except that S−1 is now the
pseudo-inverse.

The pseudo-inverse is best understood from a consideration of what is called
the singular value decomposition (SVD) of a matrix. This is the embodiment
of a theorem in matrix mathematics that states that any N × M matrix can
always be expressed as the product of three other matrices with very special
properties. For our N × M matrix S this expression is:

S = UDVT , (1.10)

where T denotes transpose, and

• U is an N × N orthonormal matrix
• V is an M × M orthonormal matrix
• D is an N × M diagonal matrix.

Orthonormal3 means that the dot product of any column (regarded as a vector)
with any other column is zero, and the dot product of a column with itself is
unity. The inverse of an orthonormal matrix is its transpose. So

UT︸︷︷︸
N×N

U︸︷︷︸
N×N

= I︸︷︷︸
N×N

and VT︸︷︷︸
M×M

V︸︷︷︸
M×M

= I︸︷︷︸
M×M

, (1.11)

A diagonal matrix has non-zero elements only on the diagonal. But if it is non-
square, as it is if M < N, then it is padded with extra rows of zeros (or extra
columns if N < M):

3 Sometimes called simply “orthogonal,” the real version of “unitary.”
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6 Fitting functions to data

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 0 0 . . . 0
0 d2 0

0
. . .

...
. . . 0

0 0 dM

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1.12)

A sense of what the SVD is can be gained from by thinking4 in terms of the
eigenanalysis of the matrix STS. Its eigenvalues are d2

i .
The pseudo-inverse can be considered to be

S−1 = VD−1UT . (1.13)

Here, D−1 is an M × N diagonal matrix whose entries are the inverse of those
of D, i.e. 1/dj:

D−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1/d1 0 0 . . . 0 0
0 1/d2 0 0

0
. . . 0

...
. . . 0 0

0 . . . 0 0 1/dM 0

⎞
⎟⎟⎟⎟⎟⎟⎠ . (1.14)

It’s clear that eq. (1.13) is in some sense an inverse of S because formally

S−1S = (VD−1UT)(UDVT) = VD−1DVT = VVT = I. (1.15)

4 Enrichment: A highly abbreviated outline of the SVD is as follows. The M × M matrix
ST S is symmetric. Therefore, it has real eigenvalues d2

i , which because of its form are non-

negative. Its eigenvectors ui, satisfying ST Sui = d2
i ui, can be arranged into an orthonormal set

in order of decreasing magnitude of d2
i . The M eigenvectors can be considered the columns of

an orthonormal matrix V, which diagonalizes ST S so that VT ST SV = D2 is an M × M non-
negative, diagonal matrix with diagonal values d2

i . Since (SV)T SV is diagonal, the columns of
the N × M matrix SV are orthogonal. Its columns corresponding to di = 0 are zero and are not
useful to us. The useful columns corresponding to non-zero di (i = 1, . . . , L, say, L ≤ M) can
be normalized by dividing by di. Then, by appending N − L normalized column N-vectors that
are orthogonal to all the previous ones, we can construct a complete N × N orthonormal matrix
U = [SVD−1

L , UN−L]. Here D−1
L denotes the M × L diagonal matrix with elements 1/di and

UN−L denotes the appended extra columns. Now consider UDVT . The appended UN−L make
zero contribution to this product because the lower rows of D which they multiply are always
zero. The rest of the product is SVD−1

L DLVT = S. Therefore we have constructed the singular

value decomposition S = UDVT .
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1.2 Approximate fitting 7

If M ≤ N and none of the dj is zero, then all the operations in this matrix
multiplication reduction are valid, because

D−1︸︷︷︸
M×N

D︸︷︷︸
N×M

= I︸︷︷︸
M×M

. (1.16)

But see the enrichment section5 for a detailed discussion of other cases.
The most important thing for our present purposes is that if M ≤ N then we

can find a solution of the over-specified (rectangular matrix) fitting problem
Sc = y as c = S−1y, using the pseudo-inverse. The set of coefficients c we
get corresponds to more than one possible set of yi-values, but that does not
matter.

Also, it can be shown6, that the specific solution that is obtained by this
matrix product is in fact the least-squares solution for c; i.e. the solution that
minimizes the residual χ2. And if there is any freedom in the choice of c, such
that the residual is at its minimum for a range of different c, then the solution
which minimizes |c|2 is the one found.

The beauty of this fact is that one can implement a simple code, which calls
a function pinv to find the pseudo-inverse, and it will work just fine if the
matrix S is singular or even rectangular.

As a matter of computational efficiency, it should be noted that in Octave
the backslash operator is equivalent to multiplying by the pseudo-inverse (i.e.
pinv(S)*y = S\y), but is calculated far more efficiently.7 So backslash
is preferable in computationally costly code, because it is roughly five times

5 Enrichment: If M > N, the combination DD−1, which arises from forming SS−1, is not an
M ×M identity matrix. Instead it has ones only, at most, for the first N of the diagonal positions,
and zeros thereafter. It is an N × N identity matrix with extra zero rows and columns padding it
out to M × M. So the pseudo-inverse is a funny kind of inverse, which works only one way.

If S is square and non-singular, then the pseudo-inverse is exactly the same as the (normal)
inverse.

If S were a singular square matrix, for example (and possibly in other situations), then at
least one of the original dj would be zero. We usually consider the singular values (dj) to be

arranged in descending order of size; so that the zero values come at the end. D−1 would then
have an element 1/dj that is infinite, and the formal manipulations would be unjustified. What
the pseudo-inverse does in these tricky cases is put the value of the inverse 1/dj equal to zero
instead of infinity. In that case, once again, an incomplete identity matrix is produced, with
extra diagonal zeros at the end. And it actually doesn’t completely “work” as an inverse in
either direction.

For those who know some linear algebra, what’s happening is that the pseudo-inverse
projects vectors in the range of the original matrix back into the complement of its nullspace.

6 See for example, first edition W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vettering
(1989), Numerical Recipes, Cambridge University Press, Cambridge, (henceforth cited simply
as Numerical Recipes), Section 2.9.

7 By QR decomposition.
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8 Fitting functions to data
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Figure 1.4 The cloud of points fitted with linear, quadratic, and cubic poly-
nomials.

faster. You probably won’t notice the difference for matrix dimensions smaller
than a few hundred.

1.2.3 Smoothing and regularization

As we illustrate in Fig. 1.4, by choosing the number of degrees of freedom
of the fitting function the smoothness of the fit can be adjusted to the data.
However, the choice of basis functions then constrains one in a way that has
been pre-specified. It might not in fact be the best way to smooth the data to fit
them by (say) a straight line or a parabola.

A better way to smooth is by “regularization” in which we add some
measure of roughness to the residual we are seeking to minimize. The
roughness (which is the inverse of the smoothness) is a measure of how wiggly
the fit line is. It can in principle be pretty much anything that can be written
in the form of a matrix times the fit coefficients. I’ll give an example in a
moment. Let’s assume the roughness measure is homogeneous, in the sense
that we are trying to make it as near zero as possible. Such a target would be
Rc = 0, where R is a matrix of dimension NR × M, where NR is the number
of distinct roughness constraints. Presumably we can’t satisfy this equation
perfectly because a fully smooth function would have no variation, and be
unable to fit the data. But we want to minimize the square of the roughness
(Rc)TRc. We can try to fulfil the requirement to fit the data, and to minimize
the roughness, in a least-squares sense by constructing an expanded compound
matrix system combining the original equations and the regularization; thus: 8

8 This notation means the first N rows of the compound matrix consist of S, and the next NR rows
are λR.
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1.3 Tomographic image reconstruction 9

(
S

λR

)
c =

(
y
0

)
. (1.17)

If we solve this system in a least-squares sense by using the pseudo-inverse

of the compound matrix
(

S
λR

)
, then we will have found the coefficients that

“best” make the roughness zero as well as fitting the data: in the sense that the
total residual

χ2 =
∑

i=1,N

(yi − f (xi))
2 + λ2

∑
k=1,NR

⎛
⎝∑

j

Rkjcj

⎞
⎠2

(1.18)

is minimized. The value of λ controls the weight of the smoothing. If it is
large, then we prefer smoother solutions. If it is small or zero, we do negligible
smoothing.

As a specific one-dimensional example, we might decide that the roughness
we want to minimize is represented by the second derivative of the function:
d2f /dx2. Making this quantity on average small has the effect of minimizing
the wiggles in the function, so it is an appropriate roughness measure. We
could therefore choose R such that it represented that derivative at a set of
chosen points xk, k = 1, NR (not the same as the data points xi) in which
case:

Rkj = d2fj
dx2

∣∣∣∣∣
xk

. (1.19)

The xk might, for example, be equally spaced over the x-interval of interest,
in which case9 the squared roughness measure could be considered a discrete
approximation to the integral, over the interval, of the quantity (d2f /dx2)2.

1.3 Tomographic image reconstruction

Consider the problem of x-ray tomography. We make many measurements
of the integrated density of matter along chords in a plane section through
some object whose interior we wish to reconstruct. These are generally done
by measuring the attenuation of x-rays along each chord, but the mathematical
technique is independent of the physics. We seek a representation of the density

9 This regularization is equivalent to what is sometimes called a “smoothing spline.” In the
limit of large smoothing parameter λ, the function f is a straight line (zero second derivative
everywhere). In the limit of small λ, it is a cubic spline interpolation through all the values
(xi, yi).
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10 Fitting functions to data
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Figure 1.5 Illustrative layout of tomographic reconstruction of density in a plane
using multiple fans of chordal observations.

of the object in the form

ρ(x, y) =
∑

j=1,M

cjρj(x, y), (1.20)

where ρj(x, y) are basis functions over the plane. They might actually be as
simple as pixels over mesh xk and yl, such that ρj(x, y) → ρkl(x, y) = 1 when
xk < x < xk+1 and yl < y < yl+1, and zero otherwise. However, the form
of basis function that won A. M. Cormack the Nobel prize for medicine in his
implementation of “computerized tomography” (the CT scan) was much more
cleverly chosen to build the smoothing into the basis functions. Be careful
thinking about multidimensional fitting. For constructing fitting matrices, the
list of basis functions should be considered to be logically arranged from 1 to
M in a single index j so that the coefficients are a single column vector. But the
physical arrangement of the basis functions might more naturally be expressed
using two indices k, l referring to the different spatial dimensions. If so then
they must be mapped in some consistent manner to the vector column.

Each chord along which measurements are made passes through the basis
functions (e.g. the pixels), and for a particular set of coefficients cj we therefore
get a chordal measurement value

vi =
∫

li
ρd� =

∫
li

∑
j=1,M

cjρj(x, y)d� =
∑

j=1,M

∫
li
ρj(x, y)d� cj = Sc, (1.21)

where the N × M matrix S is formed from the integrals along each of the N
lines of sight li, so that Sij = ∫

li
ρj(x, y)d�. It represents the contribution of

basis function j to measurement i. Our fitting problem is thus rendered into the
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