Index

anterior cingulate cortex (ACC), 36–37, 42–43, 82–83, 134, 150–151, 286–287
anterior insula (AI), 46
anthropomorphism, 226–228
anxiety, 127–128
virtual reality and, 240–241
virtual reality exposure therapy for, 242–245
APA. See American Psychiatric Association
applied psychophysiology, 17–18
architectural loops, 25–26
artificial agents, 189–192
artificial neural networks, 343–345
attention, 296–297
breadth of, 132–133
focus, 190
rapid shifting, 117–119
spatial, 44–45
verisimilitude and, 181–182
Attrill, A., 3, 5
autism, 149
autobiographic information, 109–111
automated processes, 269
in dual-process models, 10
literature on, 10–11
NeuroIS and, 314–315
autonomic nervous system (ANS), 25–26
avatars, 98–99, 222, 231
average evoked response (AER), 68–69
aversion, 247–249
AX-Continuous Performance Task, 129
axon, 26–27
back tasks, 129
Baddeley, A., 205
Ballenson, J. N., 223–224
Bainbridge, W. S., 99–100
Banaji, M., 171
Banakou, D., 230
Bard, P., 196
Barr, N., 93–94
Barrett, L. F., 50–51
Barton, H., 5
Basak, C., 298–299
basal ganglia, 40–44
Baumgartner, Susanne, 131
Bavelier, D., 294, 300–301
BCI. See brain-computer interfaces
Bechara, A., 63–64, 158–159, 204–205
behavioral economics, 316–317
behavioral observation, 237
behaviorism, 6–7
Beidel, D. C., 63
Berners-Lee, T., 79–80
Bernston, G., 214–216
bias, 318–320

Index

Bickart, K. C., 50–51
Billeux, J., 146–147
bioelectronic loop, 273–275
biological neural networks, 343–345
bio-EMG data, measurement of, 73–74
Blachnio, A., 117
blood pressure, 62
blood volume, 62
bottom-up affective perspectives, 15–16
Boucsein, W., 277
brain. See also large-scale brain networks;
social brain in cybersecurity, 316–319
vascular view of, 31
emotions and, 200
forebrain, 33
Google and, 81–87
hindbrain, 32
Internet addiction and, 132–135
Internet and, 80–81
midbrain, 32–33, 112–113
MMT and, 133–134
modular view of, 249–250
multitasking and, 81–83
orientations, 30–32
planes, 30–32
social interaction and, 222–223
social media and, 111
social networks and, 107–109
stressors and, 241–243
in threatening contexts, 212
traumatic injury to, 257–258
BRAIN Initiative, 332–333
brain-based cyberpsychology, 22–23, 333
brain-computer interfaces (BCI), 261–262
neurogaming and, 309–310
potential of, 263–265
brainstem, 32, 50–51
Brand, M., 150–151
breadth of attention, MMT and, 131–133
Bressler, S., 249
Broca’s area, 40, 44–45
Broadman’s map, 39–40
Burgess, P. W., 136, 138–140, 183–184, 186
on cognition, 135–136
Bush, G., 82–83, 134
Cacioppo, J., 35, 73–74, 214–216
Cain, M. S., 132
Cannon-Bard theory, 196
Carberry, S., 192–195
cardiac response, 62
Carr, N., 80, 81, 94, 117–118
Cartesian dualism, 6
Castellanos, F. X., 254–255
caudate nucleus, 41
cell body, 26–27
Central Executive Network (CEN), 46
central nervous system (CNS), 25–26
cerebellum, 32
cerebral cortex, visual processing pathways in, 38
cerebrospinal fluid (CSF), 25–26
Chalmers, D., 8–9, 92, 98
Chaminade, T., 226–228
Chandler, J., 96–97
children
academic achievement in, 182–183
learning in, 126–127
MMT of, 116–117
Chou, Y. H., 299–300
Clark, A., 8–9, 92, 98
Clickworker, 96–97
clinical neuroscience
cyberpsychology and, 236–237, 249–351
ecological validity and, 179–186
psychophysiology and, 56
virtual environments for, 237–241
virtual reality and, 356
CNS. See central nervous system
cognition, 176. See also embodied cognition;
extended cognition
affectively hot, 16–17
Burgess on, 135–136
non-salient cold, 16–17
Parsons on, 289–290
social, 109–111, 217–218
technology and, 8–9
video games and, 294–298
virtual reality and, 284–291
virtual worlds and, 100–101
Cognitive Atlas, 94–95
cognitive control tasks, 24, 129
MMT and, 130–131
cognitive neuroscience, paradigm shift in, 249–251
cognitive ontologies, 351–352
cognitive processes, 186–187, 199
action video games and, 294
in MMT, 135
nonaction video games and, 293–294
cognitive revolution, 6–7
affective neuroscience and, 7
cognitive tasks, systematic presentation of, 100
Cohen, L., 85–86
cold executive functions, 202
collaborative knowledge bases, 352–353
collective knowledge building, Internet for,
94–95
college students
learning in, 125–126
MMT of, 125–126
Color Naming condition, VRST, 288
command module, 282–283
common methods bias, 319–320
communication, neurons and, 26–29
complex stimuli, 22
Computational Neuropsychology and Simulation, 284–285
Parsons on, 285–286, 289
virtual environments and, 285–286
Computational Theory of Mind, 6–7
counter addiction, 145
conflict, 146
monitoring, 152–154
connection evolution and, 105
social networks and, 105
Connolly, I., 5
consciousness, flow model, 289
textualized succession of events, social neuroscience and, 220–221
continuous performance task (CPT), 235–236
contrast sensitivity function, 294–295
controlled processes in dual-process models, 10
literature on, 10–11
troller module, 282–283
cortical areas, 33, 40–41
cortical organization, inputs and outputs in,
43–44
cortical thickness, 152
Counterstrike (game), 306
CPT. See continuous performance task
criminal behavior, self-report of, 182–183
Critchley, H. D., 176
Crowell, Howard, 7, 15–16, 199
Crosler, R. E., 321–322
Croucher, M., 188
Crowder, R. G., 171
CrowdFlower, 96–97
crowding acuity, 235
CSF. See cerebrospinal fluid
Csikszentmihalyi, M., 289, 290–291
cyber addiction disorder, 143, 154–155
decision making and, 157–159
executive control in, 150–152
Go/No-go paradigm and, 156–157
reward network and, 159–162
Stroop performance in, 154–156
Cyberball, 230–232
cybernetics, 3
affective neuroscience and, 14–15, 346–347
brain-based, 21–25, 335

Index
cyberpsychology (cont.)
clinical neuroscience and, 236–237, 349–351
cognitive ontologies and, 311–312
cybersecurity and, 316–318, 326–328
defining, 3–6
for dynamic presentation of social stimuli, 223
growth of, 4
knowledge bases, 352–353
language and, 337–338
neuroscience and, 5–6, 9–10, 311, 336–337,
338–340, 341–346
paradigms, 334–336
peer-reviewed academic journals, 4–5
research, 338–340
simulated environments and, 347–349
social neuroscience and, 223–226, 347–349
subjective survey methods in, 268–270
cyber-relationship addiction, 145
cybersecurity
brain in, 318–319
cyberpsychology and, 316–318, 326–328
outcomes, 316–317
self-control and, 322–323
self-reports and, 328–329
cybersexual addiction, 145

Damasio, H., 52–53, 176, 186–187
D’Arcy, J., 321–322
data, in psychophysiology, 58–59
davey, C. G., 112–114
David, P., 120
Davidson, R. J., 280
Dawson, M. E., 65
de Gelder, B., on affective loops, 224–225
de Rosis, F., 192–193
decision making, cyber addiction disorder and,
157–159
default mode network, 8–10, 45, 46–47,
249–251
dysfunction in, 236
executive control network and, 149
large-scale brain networks and, 12–13
maladaptive interactions, 149
social media and, 109
Dehaene, S., 85–86
demand bias, 319–320
dementia, 149
dendrites, 26–27
depression, Facebook, 119–120
depth of information, on Internet, 91–92
Descartes, Rene, 6
diagnostic and statistical manual (DSM),
147–148
Dickerson, B. C., 50–51
diencephalon, 33–34, 40–41
Diffusion-Tensor Imaging (DTI), 71
digital immigrants, 79–80
digital natives, 79–80
digitSpan, 131
dimoka, a., 314, 324–325
ding, W. N., 149–150
direct pathway, FSC, 47–50
dlPFC. See dorsolateral prefrontal cortex
doorine and, 347–349
dual-process models,
dopaminergic afferents, 42–43
dorsal pathways, 51–53
dorsal raphe, 42–43
dorsal striatum, 41
dorsolateral prefrontal cortex (dlPFC), 46,
150–151, 155–156, 199, 298
dotS-Triangles task, 131
dsm. See Diagnostic and Statistical Manual
DTI. See Diffusion-Tensor Imaging
dual stream fronto-parietal model, 30–32
dual stream model for language processing,
30–32
dual task interference, fMRI and, 325–326
dual-process models, 10
approaches, 202–205
automatic processes in, 10
controlled processes in, 10
moral decision making and, 205–207
dunbar, Robin, 19, 103–104, 105, 334–336
on social brain, 105–106
dunbar’s number, 106–107
dura mater, 25–26
dynamic presentation of social stimuli,
cyberpsychology for, 223
eBay, 124–125
eccrine sweat glands, 59–61
ecological validity, 172
affective neuroscience and, 176–177
clinical neuroscience and, 179–186
defining, 180–181
everyday/laboratory research conflict, 169–172
fidelity and, 173
function-led tests and, 184
immersion and, 172–173
multimodal stimuli and, 219
office, 183–184
Index

perception and, 172–173
presence and, 173–174
of social neuroscience, 219
stimuli, 22
veridicality and, 182–183
verisimilitude and, 181–182
virtual environments and, 172–173, 251–252
virtual reality and, 185–186
Edinburgh Virtual Errands Task (EVET), 137–138, 141–142
errand list A, 138–139
errand list B, 139
EEG. See electroencephalography
electrocardiography, 60–65
in psychophysiology, 62
electrodermal activity, 60–65, 302
in psychophysiology, 19–62
electroencephalography (EEG), 18–19, 66–67, 174, 308–309
NeuroIS and, 311–312
psychophysiology and, 65–69
electromyography (EMG), 60–65
electrooculography, 60–65
psychophysiology and, 63–64
Ellison, Nicole, 107
embodied cognition, 92, 228–229
metaverse platforms and, 98
Second Life and, 98–99
EMG. See electromyography
Ermelkamp, P. M., 244–245
emotions, 15
affective computing systems recognition of, 18
amygdala and, 38–39
brain and, 200
Picard on, 276
enhanced stimulus presentations, for social neuroscience research, 219
Entertainment Software Association, 293
epinephrine, 26
Eriksen Flankers task, 131
event-related potential (ERP), 68–69, 322–323
everyday multitasking, 141–142
everyday/laboratory research conflict, ecological validity, 169–172
EVET. See Edinburgh Virtual Errands Task
evolution, 11
affective processes and, 15
connection and, 105
neurocognitive processes and, 15
racism and, 229–230
of social brain, 105
executive control
in cyber addiction disorder, 150–152
of frontal-subcortical circuits, 50
heavy media multitasking and, 128–131
hot, 202
inhibitory control and, 16, 176–177
light media multitasking and, 128–131
neural correlates of, 110–112
virtual environments and, 252
executive control network, 9–10, 45–47, 249–250, 252–253
default mode network and, 149
dysfunction in, 236
in Internet addiction, 148
large-scale brain networks and, 11–12
maladaptive interactions, 149
executive function, 256–257
hot, 202
verisimilitude and, 181–182
executive function–comportment network, 44–45
executive functions
MMT and, 131
on-line social interactions and, 116–117
executive inhibition, 16
extended cognition, 8–9
Internet and, 92–94, 101–102
mobile phones and, 92–94
extended mind theory, 8–9, 92
externalization, Smartphones and, 8–9
eye movements, 63–64
face-and-object identification network, 44–45
addiction, 115–116
appeal of, 103–104
depression, 119–120
fMRI of activity on, 113
nucleus accumbens and, 112–114
reward network and, 111–112
social affiliation and, 113–114
variable-ratio schedules and, 114–115
Farah, M. J., 205
fear, 246–247
conditioning, 207–208
pain-related, 247–249
phobias, 242–245
Fellows, L. K., 205
Ferguson, A. M., 94
Fidelity
ecological validity and, 173
in psychophysiology, 271–273
in virtual environments, 172–173, 271–272
HTTLPR polymorphism, 207–208
fMRI. See functional magnetic resonance imaging
fNIRS. See functional near-infrared spectroscopy
Foerde, K., 127

© in this web service Cambridge University Press
www.cambridge.org
Index

Granek, J. A., 300
gray matter, 34
in amygdala, 108–109
social networks and density of, 111
Green, C. S., 294
Greenfield, David, 159
Griffiths, M., on Internet addiction, 145–147
Guilmette, T. J., 182
Haarmann, A., 277
Haier, R. J., 199
Half Life 2, 137–138
Hammer environment editor, 137–138
Hampton, K. N., 103
Han, D., 161
HCl. See human computer interaction
head mounted display (HMD), 238–239, 350–351
screen-based media and, 239–240
heavy media multitasking, 128–131
Kanai on, 71
Heckener, H. R., 20–21, 111
Herath, T., 224–225
Hermans, E., 241–242
hindbrain, 32
hippocampal gyrus, 298
hippocampus, 33–34, 38–39, 127
Hiraki, K., 299–300
HMD. See head mounted display
Hodgins, J., 226–228
Hoeft, F., 304
Hoffman, Hunter, 246
Höök, Kristina, 224–225
Hortensius, R., 224–225
hot executive control, 202
Hou, H., 70–71
human computer interaction (HCI), 57–58, 267–268
human nervous systems, 25–26
Hung, Y., 71–72
Hunter, J. E., 244–245
hypothalamus, 33–34, 50–51
IACToR. See International Association of CyberPsychology, Training, and Rehabilitation
IADQ. See Internet Addiction Diagnostic Questionnaire
ICA. See Index of Cognitive Activity
IGT. See Iowa Gambling Task
immersion defining, 272
ecological validity and, 172–173
presence and, 272–273
in psychophysiology, 271–273
in virtual environments, 173–174
folders, memory and, 89–90
folk psychology, 6
Footbridge Dilemma, 206
forebrain, 33
Fox, J., 223–224
Franzen, M. D., 180–181, 182
frontal lobes, 35–37
frontal subcortical circuits (FSC) affect and, 50–51
direct pathway, 47–50
executive control of, 50
indirect pathway, 48–50
large-scale brain networks, 44
motivation and, 50
FSC. See frontal subcortical circuits
Fullwood, C., 5
dual task interference and, 315–316
of Facebook activity, 113
NeuroIS and, 323–324
for presence measurement, 174
uses of, 71–72
of videogames, 299–301
functional near-infrared spectroscopy (fNIRS), 72–73
function-led tests, ecological validity and, 184
function-led virtual environments, neuropsychological assessment and, 216–217
fusiform face area, 39
GABA. See gamma-aminobutyric acid
Galimberti, C., 5
gamma-aminobutyric acid (GABA), 29, 48–50
Gen-D factors, 199
general linear model (GLM), 342–343
Georgescu, A. L., 225–226
glia, 26
GLM. See general linear model
Globisch, J., 59–61
globus pallidus, 41
Glottbach, E., 207–208
glutamate, 29, 48
goal management, 190
Goel, V., 16–17, 199
Goldstein, G., 136–137
Gong, D., 14, 303–304
Go/No-go paradigm, 118–119, 153
cyber addictions and, 156–157
Google, 80–81
brain and, 85–87
Gorini, A., 100
Gosling, S. D., 95
grade point average, 126
Index

impulsivity, 130
Index of Cognitive Activity (ICA), 64
indirect pathway, 48–50
inferior parietal lobule, 179
information
availability of, 91–92
integration, 190
overload, 145
recall, 85–87
inhibitory control, 116, 152
executive control and, 16, 176–177
insula, 39–40
anterior, 46
insular cortex, 39–40
integration, affective computing and, 193
interface validation, 283–284
Interference condition, VRST, 288
International Affective Picture System, 61–62
International Association of CyberPsychology, Training, and Rehabilitation (ACToR), 4
Internet, 8–9, 79–80
availability of information on, 91–92
brain and, 80–81
for collective knowledge building, 94–95
depth of information on, 91–92
dorsolateral prefrontal cortex and, 86–87
extended cognition and, 92–94, 101–102
gaming technology and, 85
information recall and, 87–89
mechanical turk and, 95–97
memory and, 82, 91–92
reading and, 86–87
reward and, 83–85
search, 83–85, 86–87
as transactive memory partner, 87–91
virtual worlds, 99–100
Internet addiction. See also cyber addiction disorder
brain and, 152–154
dopamine in, 161
effective control network in, 148
gaming, 162–163
Griffiths on, 145–147
large-scale brain networks and, 148–150
negative consequences of, 149–150
salience network in, 149
test, 147
Young on, 143–145
Internet Addiction Diagnostic Questionnaire (IADQ), 143–145
Internet gaming, 161–162
addiction, 162–163
interoceptive predictive coding model, 175
interpersonal communication, 95–96
interpersonal understanding, 21–22
interpreting others, 226–228
invasiveness, 239
Iowa Gambling Task (IGT), 16–17
design of, 203
somatic marker hypothesis and, 203–205
ventromedial prefrontal cortex in, 56
James, William, 10, 176, 195–196
James-Lange theory, 195–196
Jovanovski, D., 257–258
on heavy media multitasking, 71
on personality traits, 82–83
Kastner, M. P., 182
Kätsyri, J., 304
Kawato, M., 226–228
Ke, F., 307–308
Keefe, F. J., 247–249
Kim, S. H., 70
KineCT system, 247–248
Kirwan, G., 5
Klinger, E., 100
Koepp, M. J., 304
Kronova, A., 124–125
Kosinski, M., 121–122
Kühn, S., 162
Kurzweil, Ray, 194–195
laboratory methods, 170–171
Lange, Carl, 195–196
language, 109–111
cyberpsychology and, 337–338
dual stream model for, 30–32
large-scale brain networks, 11, 24, 233, 242, 333–334
action videogames and, 301–304
in affective dysfunctions, 235–236
affective neuroscience and, 201–202
conceptualizations of, 44–45
default mode network and, 12–13
effective control network and, 11–12
frontal-subcortical circuits, 44
Internet addiction and, 148–150
mentalizing network and, 12–13
in neurocognitive dysfunctions, 235–236
presence and, 174–175
salience network and, 13–14
for social cognitive processing, 217
social media and, 109–111
virtual environments and, 253–254
lateral fissure, 35
learning, 190
in adolescents, 126–127
in children, 126–127
learning (cont.)
in college students, 125–126
machine, 342–343
videogames and, 307–308
LeDoux, J., 40, 241
Lewis, R. F., 120
Li, B., 155–157
Lieberman, M., 115–116, 216
light media multitasking, 128–131
likes (social media), 111, 113
Lim, S. W. H., 135–136
limbic lobe, 40–43
limitations, 318–320
Lin, L., 131–132, 141
Linden Labs, 97–98
Littel, M., 156–157
Liu, J., 117–118
locus coeruleus, 42–43
Logie, R. H., 137, 138–139
Loh, K. K., 71, 82–83, 117–118, 133, 134
Lui, K. F., 132, 135–136
Luu, P., 82–83, 134
machine learning, 342–343
magnetoencephalography (MEG), 66–67
psychophysiology and, 69
Maister, L., 230
Malinen, S., 245–246
many-to-many relationship, 74
many-to-one relationship, 74
Mason, W., 95
Match.com, 311–312, 339–340
Matsuda, G., 299–300
McLuhan, M., 79–80, 85–86
MCT. See Multitasking in the City Test
mechanical turk, 95–97
media multitasking (MMT), 124
of adolescents, 126–127
assessment of, 134–140
brain and, 133–134
breadth of attention and, 131–133
of children, 126–127
cognitive control tasks and, 130–131
cognitive processes in, 135
of college students, 125–126
defining, 135
early accounts of, 124–125
effective functions and, 131
heavy, 71, 128–131
light, 128–131
memory and, 128
negative impacts, 125
psychological profiles of, 127–128
research into, 125
single task paradigms and, 134
tests, 134–140
media multitasking index (MMI), 128–129, 130
medial prefrontal cortex (mPFC), 42–43
Medialab, 89
medical and health education, 100–101
MEG. See magnetoencephalography
memory, 296–297
control, 190
folders and, 89–90
Internet and, 82, 89–92
MMT and, 128
prospective, 181–182
for saved information, 89
transactive, partners, 87–91
verisimilitude and, 181–182
working, 293–298
Memory and Planning constructs, 139–140
Menon, V., 236, 242, 249
mentalingual networking, 109–111, 350–351
large-scale brain networks and, 12–13
NeuroIS and, 324–325
social cognitive neuroscience and, 20
for social cognitive processing, 217–218
social neuroscience and, 178–179
Mesli, D., 20–21, 110–111, 113, 134
mesolimbic dopamine system, 114
Mesulam, M. M., 44–45
MET. See Multiple Errands Tasks
metaverse platforms, 98
Microsoft, 247–248
midbrain, 32–33, 112–113
mid-saggital sections, 36–37
Miller, George, 6–7
Milner, B., 183–184
Minear, Meredith, 130
mirroring network, 326–328
social cognitive neuroscience and, 218
social neuroscience, 179
Mishra, J., 301
Mitchell, Jason, 114
Mitroff, S. R., 132
MMI. See media multitasking index
MMT. See media multitasking
mobile phones, 21
extended cognition and, 92–94
Montag, C., 306
mood modification, 146
morality
decision making, 205–207
dilemmas, 210–212
Morawetz, C., 20–21, 113
Mori, Masahiro, 226–227
motivation, 190
frontal-subcortical circuits and, 50
motivational state-control perspectives, 15–16
Index 441

reflective systems, 13
addiction and, 115–116
social cognitive neuroscience and, 218
social neuroscience and, 178–179
rehabilitation, 307
simulations in virtual environments, 260–261
reinforcement, 159
relapse, 146
Research Domain Criteria (RDoC), 147–148, 331–332
research results, 316–317
respiration, 60
psychophysiology and, 62–63
reward network, 42–43
cyber addiction disorder and, 159–162
Facebook and, 111–112
Internet search and, 83–85
self-disclosure and, 114
videogames and, 304–305
Rideout, V., 124–125, 126–127
Riedl, R., 314, 324, 325
Riva, Giuseppe, 3, 5
on affective arousal, 208
Rizzo, A., 242–245
robots, 226–227
Rolandin fissure, 35
Rupp, R., 261–262
Sacheli, L. M., 229
salience network, 9–10, 24, 45–47, 146, 252–253
dysfunction in, 236
in Internet addiction, 149
large-scale brain networks and, 13–14
Sampasa-Kanyinga, H., 120
Sanchez-Vives, M. V., 175–176, 179
Schachter, S., 196, 197–198
Schaefer, E., 277
Schell, A. M., 65
Scheutz, M., 189–192
Schilbach, L., 228
Schmidt, F. L., 244–245
Schneider, W., 10
Schwartz, J. D., 192–193
Scott, J. C., 114–135
screen-based media, 239–240
Second Life, 97–98
embodied cognition and, 98–99
seeking system
dopamine and, 16
Panksepp on, 83–84
Seeley, W. W., 252–253
self, virtual representations of, 228–230
self-control, 116–117
brain and, 151
cybersecurity and, 322–323
defining, 152
self-disclosure, reward network and, 114
self-model, 190
self-referential processing, 19–20, 109–111
self-reports
of criminal behavior, 182–183
cybersecurity and, 318–320
limitations of, 58, 269–270, 319, 320–321, 327
Seraglia, B., 72–73
serotonin, 29
Seth, A. K., 167–168, 174–175, 176–177
interceptive predictive coding model, 175
shallow information processing, 117–119
Shiffrin, R. M., 10
Short, J., 177–178
Shultz, S., 105–106
signal processing algorithms, 281–282
signals into commands, 282–283
simulated environments, 346–347. See also virtual environments
cyberpsychology and, 347–349
simulation technology, 54
Singer, J., 196, 197–198
single photon emission computed tomography (SPECT), 66–67, 70–71, 299–300
single task paradigms, MMT and, 154
Sitzmann, T., 307–308
skin conductance level, 65
Slater, M., 173, 175–176, 224–225
Sloan, A., 188
Small, Gary, 86, 87
Smartphones, 93
externalization and, 8–9
sMRI. See structural magnetic resonance imaging
SnowWorld, 247
Soares, J. J., 59–61
social affiliation, 160–161
Facebook and, 113–114
social behavior, 7, 19–20
social media and, 103
social brain, 104, 107–108, 221–222, 335
Dunbar on, 105–106
evolution of, 105
networking, 120–122
social cognition, 109–111
large-scale brain networks for, 217
mentaling network for, 217–218
social cognitive neuroscience, 216–217
affective, 7–8
discipline, 216–217
mentaling network and, 20
mirroring network and, 218
reflective systems and, 218
reflexive system and, 218
social media and, 19–21
© in this web service Cambridge University Press

Cambridge University Press
978-1-107-09487-1 — Cyberpsychology and the Brain
Thomas D. Parsons
Index
More Information

www.cambridge.org

Cambridge
Index

social comparison, 113, 119–120
 downward, 119
 upward, 119
social desirability bias, 270, 319–320
social exclusion, 230–232
social factors, 159
social interaction
 brain and, 221–223
 in social neuroscience, 221–223
social media, 56–57
ADHD and, 55
 brain and, 111
 default mode network and, 109
 global phenomenon of, 122
 large-scale brain networks and, 109–111
 likes, 111, 113
 neuroscience of, 314
 social behavior and, 103
 social cognitive neuroscience and, 19–21
 variable-ratio schedules and, 114–115
social networks
 brain and, 107–109
 connection and, 105
 dark sides of, 115
 gray matter density and, 111
 sizes of, 106–107
social neuroscience, 177–178
contextualized succession of events and,
 220–221
 cyberpsychology and, 223–226, 347–349
 defining, 214
 ecological validity of, 219
 enhanced stimulus presentations for,
 219
 mentalizing network and, 178–179
 mirroring network, 179
 paradigms in, 348–349
 psychophysiology and, 56–57
 reactive inhibition and, 178–179
 reflexive systems and, 178–179
 social interaction and brain in, 221–223
 static stimulus presentations and, 219–220
 virtual environments and, 223–226
social regulation, 190
social rejection, 221–223
social stimuli, dynamic presentation of, 223
sodium-potassium pump, 27–28
somatic marker hypothesis, 16–17
IGT and, 205–209
Sonuga-Barke, E. J., 254–255
Sparrow, Betsy, 87–91, 117–118
spatial attention network, 44–45
SPECT. See single photon emission computed
tomography
spinal cord, 23–26

SQUID. See super-conductive quantum interference device
state-control perspectives, 7, 199–200
static stimulus presentations, 219–220
Steers, M. L. N., 119
stimuli, 172–173
coldly valid, 22
stressors
 brain networks and, 241–242
 virtual environments and, 241–242
 striatum, 127, 162
 ventral, 41, 304
Stroop performance, 87–88
 in cyber addictions, 114–116
 Stroop test. See also Virtual Reality Stroop Task
color interference, 286–287
color-word, 116
structural magnetic resonance imaging (sMRI),
 66–67, 71
structural neuroimaging, of videogamers,
 298–299
subcortical areas, 40–41
subjective survey methods, 268–270
subjectivity bias, 319–320
substantia nigra, 41
subthalamic nucleus, 41
super-conductive quantum interference device
 (SQUID), 69
superior temporal sulcus, 179
support vector machine (SVM), 218–219
survey measures, 269
 subjective, 268–270
SVM. See support vector machine
Sylvian fissure, 35, 39–40
synaptic cleft, 29
synaptic vesicles, 29–30
system purpose, 193
systems neuroscience, 333–334
 neurodevelopmental disorders and, 254–256
Tactical Ops: Assault on Terror (game),
 305–306
Tamir, D. I., 111, 114
Tan, T., 192–193
Tao, J., 192–193
task-cued stimulus-classification, 129
TBI. See traumatic brain injury
telencephalon, 34–35
temporal love, 38–39
terminal synaptic buttons, 26–27
Tetris, 299
thalamic nuclei, 33, 43–44
thalamus, 42–43
threatening contexts
 affective responses in, 208–210
brain in, 212
prosocial behavior in, 212
thresholds, 282–283
tolerance, 146
Tomasi, D., 84
Tomb, I., 204
“Towards Cyberpsychology: Mind, cognition and society in the internet age” (Riva and Galimberti), 5
training, adaptive, 284–291
transactive memory partners, 87–91
transcranial Doppler, 174
traumatic brain injury (TBI), 217–258
trivia questions, 87–88
Trolley Dilemma, 206, 347
trust assessments, 314–325
eBay and, 314–325
uncanny valley hypothesis, 216–227
Uncapher, M. R., 81–83
Van Oyen Witvliet, C., 62
Vance, A., 312–323
variable-ratio schedules
Facebook and, 114–115
social media and, 114–115
VBM. See Voxel-Based Morphometry
ventral pallidum, 41
ventral pathways, 51–53
ventral striatum, 41, 304
role of, 42–43
ventromedial prefrontal cortex, 16–17, 50–51, 104, 107–108, 112–113
damage to, 204
in IGT, 56
veridicality, 182–183
verisimilitude, 136–137
attention and, 181–182
ecological validity and, 181–182
executive function and, 181–182
memory and, 181–182
prospective memory and, 181–182
VET. See Virtual Errands Test
videos games, 22, 293, 310–312
action, 14, 294, 301–304, 310
addiction, 162–163
cognitive abilities and, 294–298
dark side of, 305–307
dopamine and, 311–312
fMRI and, 299–301
Internet and, 85
learning through, 307–308
negative impact of, 305–307
neurogaming, 308–309
nonaction, 293–294
reward network and, 304–305
serious, 307–308
structural neuroimaging and, 298–299
violence in, 305
violence, 306
in videogames, 305
Virtual Apartment, 235
virtual environments, 22, 141
adaptive, 278, 291–292
for affective assessments, 207
affective computing and, 271–272
affective responses elicited by, 208–210
for clinical neuroscience, 237–241
Computational Neuropsychology and Simulation and, 287–288
ecological validity and, 172–173, 253–252
effective control and, 252
for fear conditioning, 207–208
fidelity in, 172–173, 271–272
function-led, 256–257
future development of, 262–263
immersion in, 173–174
large-scale brain network and, 251–254
low fidelity, 172–173
multitasking and, 137
neutral correlates of, 175–176
neurodevelopmental disorders and, 255
Parsons on, 100, 282–283, 284–285
real-world tasks and, 257–258
rehabilitation simulations, 260–261
social neuroscience and, 223–226
stressors and, 241–242
WCST and, 237–238
Virtual Errands Test (VET), 256–257
virtual humans, 22
Virtual Library Task (VLT), 258–260
virtual reality
adaptive training and, 284–291
anxiety and, 240–241
clinical neuroscience and, 350
cognitive performance and, 284–291
defining, 239
development of, 240
early platforms, 238–239
ecological validity and, 185–186
invasiveness of, 259
moral dilemmas, 210–212
for neurocognitive rehabilitation, 259–260
NeuroIS, 315–316
for pain distraction, 245–247
virtual reality exposure therapy (VRET), 185–186
for anxiety, 242–245
avoidance and, 247–249
virtual reality exposure therapy (VRET) (cont.)
meta-analysis of, 242–245
pain-related fear and, 247–249
for phobias, 242–245
research, 242–245
Virtual Reality Look for a Match (VRLFAM), 237–238
Virtual Reality Stroop Task (VRST), 209, 252, 286–289
Color Naming condition, 288
Interference condition, 288
Word Reading condition, 288
virtual representations
of other, 228–230
of race, 229–230
of self, 228–230
virtual worlds
assessments, 248–260
caveats about, 101
cognition and, 100–101
Internet research, 99–100
for medical and health education, 100–101
visual masking, 295
visual pathway models, 30–32
visual processing pathways, 296–297
in cerebral cortex, 38
VLT. See Virtual Library Task
vocational capacity, 182–183
vocational integration, 182–183
vocational status, 182–183
Vogel, J. J., 307–308
Von Der Heide, R., 111, 336
Vorgan, G., 87
Voxel-Based Morphometry (VBM), 71, 133–134
Vrana, S. R., 62
VRET. See virtual reality exposure therapy
VRLFAM. See Virtual Reality Look for a Match
VR-PASAT, 209–210
VRST. See Virtual Reality Stroop Task
Wagner, A. D., 12, 82, 130–131
Wang, Z. J., 120, 155
Ward, A., 91–92
WCST. See Wisconsin Card Sort Test
Web 2.0, 94–95, 352–353
web-based assessments, 95
Wegner, D., 90, 117–118
Weiss, P. L., 100
Wernicke’s area, 44–45
wetware, 8–9
white matter, 34
Wiedenhold, Barbara, 316–317
Wilbur, S., 173
Wilhelm, K. L., 180–181, 182
Wilms, M., 228
Wilson, Barbara, 180
Wisconsin Card Sort Test (WCST), 183–184
virtual environments and, 237–238
withdrawal, 146
Wong, A. C. N., 132, 135–136
Word Reading condition, VRST, 288
working memory, 295–298
World of Warcraft, 36–37
Wouters, P., 307–308
Xu, S., 120
Yap, J. Y., 135–136
Young, K., 147–148
on Internet addiction, 143–145
Yuan, K., 150–151, 155
Yuste, Rafael, 343
Zaki, J., 219, 347–348