Coal has been the world’s fastest-growing energy source in absolute terms for over a decade. Coal also emits more CO₂ than any other fossil fuel and contributes to serious air pollution problems in many regions of the world. If we hope to satisfy the demand for affordable energy in emerging economies while protecting the environment, we need to develop a keen understanding of the market that supplies coal. This book offers an in-depth analysis of the key producers and consumers that will most influence coal production, transport, and use in the future. By exploring how countries such as China, India, Indonesia, Australia, and South Africa have developed their respective coal industries—and how these industries link together through the international coal trade—experts shed light on how the global coal market may evolve, and the economic and environmental implications. This book is the most comprehensive treatment of these topics to date and will appeal to a wide readership, including scholars and practitioners working on energy economics and policy.

Mark C. Thurber is Associate Director at the Program on Energy and Sustainable Development (PESD) at Stanford University, where he studies coal, natural gas, oil, electricity, and carbon markets, as well as how to deliver energy to the poorest populations around the world. He teaches on energy markets and policy at Stanford University’s Graduate School of Business.

Richard K. Morse is an affiliated researcher at the Program on Energy and Sustainable Development (PESD) at Stanford University. He has published multiple articles and presented at major coal industry conferences on the operation of the global coal market, with a particular focus on China.
The Global Coal Market

Supplying the Major Fuel for Emerging Economies

Edited by

Mark C. Thurber and Richard K. Morse

Stanford University
The global coal market: supplying the major fuel for emerging economies / edited by Mark C. Thurber, Richard K. Morse.

Library of Congress Cataloguing in Publication data
The global coal market: supplying the major fuel for emerging economies / edited by Mark C. Thurber, Richard K. Morse.

ISBN 978-1-107-09242-6 (hardback)
1. Coal trade – Developing countries. 2. Energy consumption – Developing countries. I. Thurber, Mark C. II. Morse, Richard K.

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.
Contents

List of figures page vii
List of tables xiii
List of boxes xvii
List of contributors xviii
Acknowledgements xix

Part I Introduction 1

1 The Asia-centric coal era
MARK C. THURBER AND RICHARD K. MORSE 3

Part II Case studies of key coal countries 35

2 The evolution of China’s coal institutions
WUYUAN PENG 37

3 Developing large coal-power bases in China
HUAICHUAN RUI, RICHARD K. MORSE, AND GANG HE 73

4 The causes and implications of India’s coal production shortfall
JEREMY CARL 123

5 Market, investment, and policy challenges for South African coal
ANTON EBERHARD 164

6 Australia’s black coal industry: past achievements and future challenges
BART LUCARELLI 204

7 Government as creator and destroyer: Indonesia’s rapid rise and possible decline as steam coal supplier to Asia
BART LUCARELLI 294
Contents

Part III Understanding the international coal trade 375

8 US coal to Asia: examining the role of transportation constraints in energy markets
 MARK C. THURBER 377

9 The world’s greatest coal arbitrage: China’s coal import behavior
 RICHARD K. MORSE AND GANG HE 394

10 The COALMOD-World model: coal markets until 2030
 FRANZISKA HOLZ, CLEMENS HAFTENDORN, ROMAN MENDELEVITCH, AND CHRISTIAN VON HIRSCHHAUSEN 411

Part IV The potential of technology to reconcile coal and climate 473

11 New technologies to the rescue? A review of three game-changing coal technologies and their implications for Australia’s black coal industry
 BART LUCARELLI 475

12 The real drivers of carbon capture and storage in China
 RICHARD K. MORSE, VARUN RAI, AND GANG HE 557

Part V Conclusions and implications 583

13 Major factors affecting the production, trade, and environmental impact of coal
 MARK C. THURBER AND RICHARD K. MORSE 585

Part VI Detailed information on the coal value chain in China 609

Appendix: A statistical review of coal supply, demand, and transport in China
 KEVIN JIANJUN TU 611

Index 686
Figures

1.1 Historical trends in world primary energy consumption by energy source
 page 4
1.2 Share of total global CO₂ emissions from fossil fuels for coal, oil, and natural gas
 5
1.3 Historical evolution of the world coal trade
 13
1.4 Price of international energy commodities, energy adjusted for comparison on a $/MMBtu basis
 14
1.5 Net imports of steam coal for the most significant importing countries
 17
1.6 Steam coal production by country in 2012
 18
1.7 Net exports of steam coal for the most important exporting countries
 19
2.1 Raw coal production in China by ownership
 45
2.2 Coal consumption in China by end use
 46
2.3 Administration of the coal sector in China
 48
2.4 Annual investments at major state coal mines
 51
2.5 Share of raw coal production in China by region
 54
2.6 Number of deaths from coal mine accidents in China
 55
2.7 Power generation by source in China
 56
2.8 Energy consumption intensity in China (defined as the annual growth rate of energy consumption divided by the corresponding growth rate of GDP)
 62
2.9 Average production cost and selling price for major state coal mines in China
 65
2.10 China’s international coal trade
 67
3.1 Illustration of the administrative structure of China’s coal industry
 78
3.2 Map of coal-power bases in China
 90
4.1 Installed power capacity in India by fuel source, 2012
 127
4.2 Power generation in India by type, January 2012
 127
4.3 Estimates of India’s coal resources and reserves by data source
 128
List of figures

4.4 Coal India Limited subsidiaries and their coal resources 136
4.5 Overlap between forests, coalfields, and insurgents 149
5.1 Major coalfields of South Africa 166
5.2 Coal use in South Africa (excludes exports) 168
5.3 South African coal production, consumption, and exports: 1950–2007 170
5.4 South African coal exports: 1950–2008 172
5.5 Eskom’s coal-generated electricity in South Africa (GWh, right axis) and coal burned to generate this electricity (Mtpa, left axis) 175
5.6 Richards Bay Coal Terminal capacity 183
5.7 Coal exports through Richards Bay Coal Terminal (Mtpa) 183
5.8 Destinations of South Africa’s coal exports 185
5.9 Scenario for domestic coal demand evolution in South Africa (Mtpa) 194
6.1 Australian saleable black coal production by state, 1950–2011 208
6.2 Diagram of a bord and pillar mine 213
6.3 Lost production due to work stoppages at NSW coal mines, 1948–1960 216
6.4 Share of black coal consumption by industry, 1950 and 1959 217
6.5 Lost production due to industrial strife in Australian coal mines, 1960–1986 220
6.6 Annual nominal and real wages for NSW coal miners, 1968–1986 221
6.7 Diagram of a longwall mining operation 223
6.8 Raw coal output per man shift for Australia’s underground and open-cut black coal mines, 1960–1986 225
6.9 Exports and domestic coal sales, 1960 and 1986 226
6.10 Shares of domestic coal consumption by industry, 1960 and 1986 227
6.11 Steam coal and coking coal shares of total exports, 1960 and 1986 227
6.12 Queensland and NSW shares of black coal exports, 1960 and 1986 229
6.13 Coal piles being kept moist at Port of Newcastle 230
6.14 Ships waiting to be loaded at Port of Gladstone 231
List of figures

6.15 Nominal and real prices (1980 A$) of Australian black coal in A$ per tonne, 1980–2013 235
6.16 FOB price of Australian black coal exports in A$ and US$ per tonne, 1980–2013 236
6.17 China’s imports of steam and coking coal between 2000 and 2013 243
6.18 China’s annual steam coal imports and exports, 2000–2012 244
6.19 Value of different Australian exports in 2012 (billion A$) 246
7.1 Indonesia’s coal production by mining authorization type, 1982–2009 304
7.2 Export and domestic sales of Indonesian steam coal, 1995–2009 309
7.3 A barge pulls Adaro Energy coal down the Barito River in South Kalimantan 318
7.4 A barge with coal from Berau Coal approaches a floating transshipment facility in East Kalimantan that will transfer the coal to an oceangoing vessel for shipment to customers in Asia 318
7.5 Sea distance to major Asian discharge ports from Abbot Point (Australia), Balikpapan (Kalimantan, Indonesia), and Richards Bay (South Africa) 320
7.6 Transport cost for traditional coals from Australia (Abbot Point), Indonesia (Balipapan, Kalimantan), and Richards Bay (South Africa) to major Asian discharge ports: (a) weight basis (USD/tonne); (b) energy basis (USD/GJ) 321
7.7 Indonesia’s coal exports and domestic consumption, 2009–2012 347
7.8 Comparison of sea transport costs for traditional and “new” (low-rank) Indonesian coals with traditional and new coals from Australia and South Africa (USD per GJ) 353
8.1 Monthly averaged benchmark prices for coal, natural gas, and crude oil 380
9.1 China’s coal import surge 395
9.2 Major coal price indices in Asia 398
9.3 Dry bulk freight rates from FOB ports to Guangzhou port in ChinaCoalArb model 400
9.4 ChinaCoalArb model results 403
List of figures

9.5 Cost of freight indexed to pre-financial-crisis levels (September 2008) 405
9.6 FOB coal prices indexed to pre-financial-crisis levels (September 2008) 406
10.1 Monthly prices for steam coal in USD per tonne (CIF Eurozone, FOB Richards Bay, and FOB Newcastle) and crude oil in USD per barrel (crude oil index) between April 1996 and April 2013 412
10.2 Model players in the steam coal value added chain 417
10.3 COALMOD-World model structure 418
10.4 Production cost mechanism for a model node 420
10.5 Countries included in the COALMOD-World database 422
10.6 Marginal cost curves (2010) for selected production nodes 423
10.7 Capacity and investment costs for selected production nodes in the base year 425
10.8 Reserves of major countries in COALMOD-World 427
10.9 Capacity and investment costs for all export nodes in the base year 430
10.10 FOB costs (2010) for the export countries in COALMOD-World 431
10.11 Linear regression of average freight rates between 2002 and 2009 432
10.12 CIF costs in 2010 for selected routes (in USD/t) 434
10.13 COALMOD-World results: development of yearly global coal demand in both scenarios until 2030 (in Mtpa) 438
10.14 Global COALMOD-World results: aggregated consumption and imports in the Base Case (in Mtpa) 439
10.15 Global results: aggregated consumption and imports in the Moderate Growth scenario (in Mtpa) 439
10.16 Global results 2010: seaborne trade flows (in Mtpa) 441
10.17 Global results 2020: seaborne trade flows (in Mtpa) 442
10.18 Global results 2030: seaborne trade flows (in Mtpa) 442
10.19 Average prices of selected regions for all model years (in USD/t) in the Base Case 451
10.20 Production costs at production level for selected producers over time in the Base Case 452
10.21 Production costs at production level for selected producers over time in the Moderate Growth scenario 453
List of figures

11.1 Simplified schematic of coal bed methane (CBM) extraction 478
11.2 Seven-year CBM production profile for an actual CBM production well in the Bowen Basin 481
11.3 Seven-year CBM production profile for an actual CBM production well in the Surat Basin 482
11.4 Queensland’s 2P (proved and probable) CBM reserves 486
11.5 Queensland coal bed methane production by basin, 1997–2012 486
11.6 Queensland gas production from CBM and conventional sources 487
11.7 Simplified schematic of underground coal gasification (UCG) 502
12.1 Coal and power prices in China in 2008 570
A.1 Chinese coal resource distribution map 622
A.2 China’s coal resource distribution by type of coal 624
A.3 History of fossil fuel production in China, 1949–2009 625
A.4 Coal production by type of coal in China, 1952–2009 626
A.5 Coal production by enterprise type in China, 1949–2009 629
A.6 Coal mine licensing procedures 632
A.7 Reference coal production trajectory in China to 2030 633
A.8 Coal consumption by sector in China 634
A.9 China’s electricity generation by fuel and major events, 1978–2010 635
A.10 Coal consumption and efficiency trends at power plants, 1978–2009 637
A.12 Coal, electricity, and fuel requirements for different types of cement kilns 644
A.13 Average mine mouth sales price for coal produced by key SOEs in China 644
A.14 Reference projection for China’s electricity generation capacity mix in 2030 648
A.15 Coal consumption and efficiency trend in the Chinese power industry 649
A.16 Major coal transport routes in China 651
A.17 China’s major coastal ports and marine transport of coal 654
A.18 Coal and coke transport versus freight tonnage in China, 1978–2009
A.19 China’s inter-regional coal flow by rail in 2006, in Mt
A.20 Coal throughput at major coastal ports, from 1984 to 2009
A.21 China’s coal imports by province in 2009
A.22 High-class waterways and major inland ports in China
A.23 Coal handled at major Chinese inland ports
A.24 Indices of cargo tonnage by transport mode, normalized around 1978
A.25 Possible scenario of coal transport by mode in China
A.26 Coal output of Shanxi, Inner Mongolia, and China from 1949 to 2009
A.27 Statistical revisions of China’s coal output in 2006 and 2010
A.28 Unexplainable coal usage: China vs. Shanxi
A.29 Unexplainable coal consumption at the provincial level in China
A.30 Official statistics versus independent estimations of coal mining safety in China
A.31 Fuel combustion and carbon emissions: China vs the United States

List of figures
Tables

1.1 Role of SOEs in the coal value chain page 11
2.1 Trend of coal institutions’ evolution in China 38
2.2 Coal price adjustments nationwide (RMB/tonne) 44
2.3 Coal mining enterprises by ownership in 2005 64
2.4 Average production cost, term contract price, and spot price of power coal for major state coal mines (RMB/tonne) 65
3.1 China’s national freight via railways in 2008 85
3.2 Volume of freight traffic for key goods and commodities in 2008 (10,000 metric tons) ... 85
3.3 The coal transport capacity of China’s railways 86
3.4 China’s top 10 coal companies in 2006 and 2008 (tonne) 96
3.5 Projected coal output of Xinjiang (tonne) 115
4.1 Production at Coal India Limited (and its precursor companies) .. 125
4.2 CIL cost of production (INR/tonne) by subsidiary 131
4.3 Strategic ownership advantages and disadvantages by firm type .. 135
4.4 CIL coal prices compared to imported coal prices 137
4.5 Typology of Indian land rights 142
4.6 Loss of coal production to Naxalism at Central Coalfields Ltd. .. 150
4.7 Sector-wise actual (2012–2013) and projected (2016–2017) coal demand in India (Mt) .. 151
5.1 2012 global steam coal production and exports in million tonnes coal equivalent (Mtce) 166
5.2 Coal production in South Africa, 2009 173
5.3 Eskom’s coal-fired power stations in 2012 176
6.1 Handling capacities of major pieces of equipment used in Australian open-cut mines for overburden removal and coal extraction ... 224
6.2 Nominal and real (1980) prices (A$/t) for Australian black coal, 1980–2013 .. 235
6.3 Chinese imports of Australian coking and steam coals and percent share of total Australian exports, 2004–2012 242
6.4 India’s imports of Australian coking and steam coals 242
6.5 Australia’s demonstrated coal resources and JORC reserves as of December 2011 (in Bt) 247
6.6 Forecast increases in steam coal mining capacity due to expansion of existing mines in NSW and Queensland, 2010–2040 248
6.7 Greenfield mining projects in Galilee and Surat basins that are at an advanced stage of development (as of May 2014) 249
6.8 Nameplate capacity forecasts for major coal handling terminals at ports in NSW and Queensland 252
7.1 Eight of the ten original 1st Gen CCOW companies are still producing coal as of January 2014 302
7.2 Production per mine by type of authorization, 2009 307
7.3 The Big 6’s share of Indonesian coal production declined from 86% in 2000 to 60% in 2009 308
7.4 Indonesia’s coal exports in 2007 vs. 2009 by country of destination (Mt) 310
7.5 Indonesia’s reported coal exports for six major producers, 2000–2009 311
7.6 Reported domestic coal sales for Indonesia’s six major producers, 2000–2009 312
7.7 PLN’s 1st phase Fast Track coal-fired power plants 313
7.8 Original projections of coal demand for domestic and export markets through 2015 (Mt) 314
7.9 Internal transport arrangements for Indonesia’s six largest coal mines, 2009 317
7.10 Comparison of terms of 1st Gen and 3rd Gen CCOWs 325
7.11 Indonesia’s coal resources and mineable reserves by type of mining company, 1999 (Mt) 355
7.12 Government of Indonesia’s coal resources and reserves estimates by CV range, 2003 (Mt) 356
7.13 Government of Indonesia’s estimates of coal resources and reserves by province, 2003 (Mt) 357
7.14 Classification of Indonesia’s coal resources and reserves by CV range, 2009 (Mt) 359
7.15 Government of Indonesia’s estimates of coal resources and reserves by province, 2009 (Mt) 360
9.1 China’s coal imports by source, 2009 (in Mt) 398
9.2 China’s coal imports by province, 2009 (in Mt) 399
9.3 Mining consolidation targets in Shanxi 406
List of tables

10.1 Assumed production capacity expansion limitations per five-year period 426
10.2 Energy content of coal by production node 428
10.3 Assumed export capacity expansion limitations per five-year period 430
10.4 Freight rates for selected routes (in USD/t) 433
10.5 Reference consumption in 2010, 2020, and 2030 by IEA region for Base Case and Moderate Growth scenarios (in Mtpa) 435
10.6 Share and rank in international trade flows of major exporters in both scenarios and over time 446
10.7 Expansion of export capacity: results of Moderate Growth scenario compared to Base Case (in Mtpa) 447
10.8 Expansion of production capacity: results of Moderate Growth scenario compared to Base Case (in Mtpa) 447
10.9 Domestic consumption and share of production consumed domestically by region and scenario (selected countries) 449
10.10 World Energy Outlook demand projections for coal for power generation in the scenarios (converted to PJ) 460
10.11 Various input parameters for COALMOD-World production nodes 461
10.12 Results of COALMOD-World: consumption, domestic supply, and imports by consuming country and scenario in 2010, 2020, and 2030 462
10.13 Results of COALMOD-World: domestic supply and exports by producing country and scenario in 2010, 2020, and 2030 464
10.14 Trade flows in COALMOD-World (in Mtpa) 465
11.1 Australia’s total gas resources from all sources, 2012 488
11.2 LNG terminals under construction at port of Gladstone 489
11.3 Growth in Arrow Energy’s CBM resources, reserves, and production, 2005–2009 492
11.4 The hope vs. reality of CCS 535
12.1 Pioneer CCS pilot projects in China 562
A.1 Chronicle of the Chinese coal industry 613
A.2 Coal industry policy in China 620
A.3 Coal resources and reserves in China at the end of 2006 (in Gt) 623
A.4 List of 13 coal production bases in China 627
A.5 Coal production cost breakdown by type of enterprise in Shanxi (in yuan/tonne) 631
A.6 Energy intensities of key Chinese iron and steel enterprises
(in kgce/tonne) 638
A.7 List of major CTL projects in China 642
A.8 Demand and governmental targets for the Chinese
electricity industry 647
A.9 Coal throughput at the three coal transport routes (in Mt) 652
A.10 Overview of the linkage between the N7 ports and railways 655
A.11 Freight transport composition of Chinese railways 656
A.12 Railways owned by Shenhua Group 659
A.13 Selected major inland coal ports in China 663
A.14 Coal throughputs by road during the 10th FYP period
(in Mt) 666
Boxes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Climate change and coal in India</td>
<td>146</td>
</tr>
<tr>
<td>6.1 Coal definitions and terminology</td>
<td>205</td>
</tr>
<tr>
<td>6.2 Bord and pillar mining</td>
<td>213</td>
</tr>
<tr>
<td>6.3 Longwall mining</td>
<td>222</td>
</tr>
<tr>
<td>6.4 Provisions of the carbon pricing mechanism</td>
<td>260</td>
</tr>
<tr>
<td>7.1 The Coal Contract of Work explained</td>
<td>299</td>
</tr>
<tr>
<td>7.2 The Kuasa Pertambangan explained</td>
<td>300</td>
</tr>
</tbody>
</table>
Contributors

JEREMY CARL, Hoover Institution at Stanford University
ANTON EBERHARD, University of Cape Town
CLEMENS HAFTENDORN, DIW Berlin (former)
GANG HE, University of California, Berkeley
FRANZISKA HOLZ, DIW Berlin
BART LUCARELLI, Roleva Energy Limited
ROMAN MENDELEVITCH, DIW Berlin
RICHARD K. MORSE, Stanford University
WUYUAN PENG, China University of Geosciences, Wuhan Campus
VARUN RAI, The University of Texas at Austin
HUAICHUAN RUI, Royal Holloway, University of London
MARK C. THURBER, Stanford University
KEVIN JIANJUN TU, Canadian Industrial Energy End-Use Data and Analysis Centre (CIEEDAC)
CHRISTIAN VON HIRSCHHAUSEN, TU Berlin and DIW Berlin
Acknowledgements

This book grew out of the observation that academic attention to coal markets in recent years has not been even remotely commensurate with the significance of the fuel in meeting energy needs globally. Whether one believes that coal is a significant positive for the world, a significant negative, or a mixed bag, there is no escaping the fact that dealing with reality means accepting coal’s current importance and trying to understand where we go from here. We are delighted that we were able to assemble a group of experts with such deep country, modeling, and technology expertise to explore what we can learn from the development thus far of coal industries and coal markets around the world.

This project began at the Program on Energy and Sustainable Development (PESD) here at Stanford University when David Victor was director of the program. We are grateful for his vision in recognizing the importance of the global coal market and the relative dearth of attention that has been paid to it in academic circles. The current director of PESD, Frank Wolak, picked up where David left off in fully supporting this work and helping to bring it to fruition. Kathy Lung, PESD’s operations director, was, as usual, extremely supportive throughout the process. PESD staffer Brian Kooiman provided helpful editing and formatting assistance, as did Laura Seaman from our parent institute at Stanford, the Freeman Spogli Institute for International Studies (FSI).

We appreciate our ongoing relationship with Cambridge University Press and the highly capable work of many staff there in turning this manuscript into a book. Chris Harrison was an advocate for the project from the very beginning, and Philip Good was an excellent steward as well. Claire Wood was a pleasure to work with on all aspects of the editing and production process. David Morris did great work on the cover, and Sri Hari Kumar at Integra was responsive and helpful.

We would like to specially thank contributor Bart Lucarelli for valuable comments and insights that helped improve a number of chapters in the book. Mark Hutchinson of IHS CERA also provided helpful support in the form of published price data for Indonesian steam coal.
xx Acknowledgements

Staff at the National Bureau of Asian Research, and especially Meredith Miller and Clare Richardson-Barlow, have been supportive of this project for several years, and they helped provide forums for discussing the themes of this book.

Many, many other people contributed significantly to the individual chapters herein. They are thanked at the beginning of each chapter.

We hope you will find the material in this volume to be useful.

Mark C. Thurber
Richard K. Morse