# Contents

**Acknowledgments**

*page xi*

**Introduction**

*xii*

## Part I Approaches to the origin of life

1 Setting the stage

*Introduction* 3

1.1 The secular view on the origin of life 4

*Side Box 1.1 Books on the origin of life* 8

1.2 A few accepted facts 10

1.3 Oparin’s view, and its implications 11

1.4 Determinism and contingency in the origin of life 14

*Conversation with Albert Eschenmoser* 19

1.5 The question of creationism and intelligent design (ID) 22

1.6 SETI and the anthropic principle 24

1.7 Panspermia – and bringing in C. G. Jung 27

1.8 Only one start – or many? 28

*Concluding remarks* 29

2 The hardware

*Introduction* 31

2.1 What did we have 4 billion years ago? 31

*Conversation with Sandra Pizzarello* 36

2.2 Molecules from hydrothermal vents 38

2.3 The chemistry of life. From Oparin to Miller – and beyond 39

*Conversation with David Deamer* 42

*Conversation with Eörs Szathmáry* 45

2.4 Prebiotic nitrogen bases 47

2.5 Sugars 49

2.6 Redox reactions 50

2.7 The Fischer-Tropsch reaction 51
2.8 The N-carboxy-anhydride condensation 53
Concluding remarks 55

3 Ascending the ramp of complexity 57
Introduction 57
3.1 The creativity of contingency 58
3.2 The primacy of structure 61
3.3 Thermodynamic and kinetic control 63
3.4 Self-replication – and the concentration threshold 65
3.5 Ordered macromolecular sequences 68
3.6 The question of homochirality 69
Concluding remarks 70

4 Experimental approaches to the origin of life 72
Introduction 72
4.1 The prebiotic RNA world 72
Conversation with Ada Yonath 77
4.2 The ribocell 78
Conversation with Gerald Joyce 81
4.3 The compartmentalistic approach 82
4.4 Primordial cells without DNA? 85
4.5 The phenomenon of spontaneous overcrowding 86
4.6 The “prebiotic metabolism” approach 88
4.6.1 The universal metabolism 88
4.6.2 Metabolism on clay and mineral surfaces 88
4.6.3 The beauty of pyrite 89
4.6.4 Other metabolic approaches 90
Conversation with Doron Lancet 93
Concluding remarks 95

5 Origin of life from ground zero 97
Introduction 97
5.1 Prebiotic amino acids and peptides 97
5.2 Peptides with catalytic power 99
5.3 Proteins with a reduced alphabet of amino acids 103
5.4 How to make proteins by prebiotic means? 106
5.5 About prebiotic vesicles 109
5.6 Proposals of research projects from ground zero 111
5.6.1 The catalytic properties of Ser-His: ideal project for bioorganic chemists 112
5.6.2 Ser-His as the catalyst for the nucleotide bond 112
5.6.3 The most stable random polypeptide sequences by the NCA method 113
5.6.4 Protein biogenesis by fragment condensation of prebiotic peptides 113
Contents

5.6.5 The notion of “proteases first” 114
Concluding remarks 114
Questions for the reader 115

Part II What is life? The bio-logics of cellular life 117

6 Autopoiesis – the invariant property 119
   Introduction 119
   6.1 The visit of the Green Man 120
   6.2 Introducing autopoiesis 123
   6.3 Short historical background on autopoiesis 124
   6.4 Basic autopoiesis 125
   6.5 Criteria of autopoiesis 128
   Conversation with Amy Cohen Varela 130
   6.6 Zooming into the core of autopoiesis 133
   Side Box 6.1 Autopoiesis: three research directions for future developments, by Luisa Damiano 135
   Conversation with Evan Thompson 140
   6.7 What autopoiesis does not include 144
   6.8 Chemical autopoiesis: the case for self-reproduction of micelles and vesicles 145
   6.9 Chemical autopoiesis: a case for homeostasis 147
   6.10 Second order autopoietic structures 149
   6.11 Social autopoiesis 151
   6.12 Autopoiesis and the chemoton: comparison with the views of Tibor Ganti 153
   Concluding remarks 155

7 Cognition 157
   Introduction 157
   Conversation with Humberto Maturana 159
   7.1 The notion of cognition 166
   7.2 The co-emergence between the living and the environment 168
   7.3 The link with classic biochemistry 172
   7.4 About epistemology in autopoiesis 174
   7.5 Ontogeny, evolution, information: the view from within 180
   Conversation with Denis Noble 182
   7.6 What is death? 183
   Concluding remarks 186
   Questions for the reader 187
### Table of Contents

#### Part III Order and organization in biological systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Self-organization</td>
</tr>
<tr>
<td>9</td>
<td>The notion of emergence</td>
</tr>
<tr>
<td>10</td>
<td>Self-replication and self-reproduction</td>
</tr>
</tbody>
</table>

#### 8 Self-organization

- Introduction
- 8.1 About the term *self*
- 8.2 Self-organization of simpler molecular systems
- 8.3 Self-organization and autocatalysis
- 8.4 Polymerization
- 8.5 Self-organization and kinetic control
- 8.6 Self-organization and breaking of symmetry
- 8.7 Complex proteic systems
- 8.8 Self-organization of ribosomes
- 8.9 Self-organization in viruses
- 8.10 Swarm intelligence
- 8.11 Can living cells be reconstituted *in vitro*?

*Side Box 8.1 Phenomena of self-organization in Hydra, by Giorgio Venturini*

- 8.12 Touching on the “divine proportion”: Φ and the golden mean
- 8.13 Out-of-equilibrium self-organization

*Concluding remarks*

#### 9 The notion of emergence

- Introduction
- 9.1 Ontic and epistemic
- 9.2 A few simple examples of emergence
- 9.3 Emergence and reductionism
- 9.4 Deducibility and predictability
- 9.5 Downward causation
- 9.6 Emergence and dynamic systems

*Side Box 9.1 – The sciences of complexity, by Stuart A. Kauffman*

- 9.7 Life as an emergent property
- 9.8 Self-organization and finality

*Concluding remarks*

#### 10 Self-replication and self-reproduction

- Introduction
- 10.1 Self-replication and nonlinearity
- 10.2 Self-replicating, enzyme-free chemical systems
- 10.3 One more step towards complexity
- 10.4 Self-reproducing micelles
- 10.5 Self-reproducing vesicles
- 10.6 Nanobacteria?

*Concluding remarks*

*Questions for the reader*
## Contents

<table>
<thead>
<tr>
<th>Part IV The world of vesicles</th>
<th>263</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 The various types of surfactant aggregates</td>
<td>265</td>
</tr>
<tr>
<td>Introduction</td>
<td>265</td>
</tr>
<tr>
<td>11.1 General properties of surfactant aggregates</td>
<td>266</td>
</tr>
<tr>
<td>11.2 Aqueous micelles</td>
<td>270</td>
</tr>
<tr>
<td>11.3 Reverse micelles</td>
<td>272</td>
</tr>
<tr>
<td>11.4 Entrapment of biopolymers in reverse micelles</td>
<td>273</td>
</tr>
<tr>
<td>11.5 Water-in-oil microemulsions</td>
<td>279</td>
</tr>
<tr>
<td>11.6 Cubic phases</td>
<td>279</td>
</tr>
<tr>
<td>11.7 Size and structural properties of vesicles</td>
<td>282</td>
</tr>
<tr>
<td>11.7.1 The water pool of vesicles</td>
<td>286</td>
</tr>
<tr>
<td>11.7.2 The case of oleate vesicles</td>
<td>289</td>
</tr>
<tr>
<td>11.8 Local versus overall concentration</td>
<td>290</td>
</tr>
<tr>
<td>11.9 Prebiotic vesicle-forming surfactants</td>
<td>292</td>
</tr>
<tr>
<td>11.10 Giant vesicles</td>
<td>293</td>
</tr>
<tr>
<td>Concluding remarks</td>
<td>296</td>
</tr>
<tr>
<td>12 Vesicle reactivity and transformations</td>
<td>297</td>
</tr>
<tr>
<td>Introduction</td>
<td>297</td>
</tr>
<tr>
<td>12.1 Growth and division of vesicles: some geometrical relationships</td>
<td>297</td>
</tr>
<tr>
<td>12.2 Experimental studies on the growth of vesicles</td>
<td>300</td>
</tr>
<tr>
<td>12.3 The matrix effect</td>
<td>304</td>
</tr>
<tr>
<td>12.4 Fusion of vesicles</td>
<td>309</td>
</tr>
<tr>
<td>12.5 Size competition of vesicles – and interaction with RNA</td>
<td>313</td>
</tr>
<tr>
<td>Concluding remarks</td>
<td>317</td>
</tr>
<tr>
<td>13 Biochemistry and molecular biology in vesicles</td>
<td>319</td>
</tr>
<tr>
<td>Introduction</td>
<td>319</td>
</tr>
<tr>
<td>13.1 The entrapment of solutes in vesicles</td>
<td>319</td>
</tr>
<tr>
<td>13.2 On the surface of liposomes</td>
<td>324</td>
</tr>
<tr>
<td>13.3 The road map to the minimal cell: complex biochemical reactions in vesicles</td>
<td>326</td>
</tr>
<tr>
<td>Concluding remarks</td>
<td>331</td>
</tr>
<tr>
<td>Questions – and research proposals – for the reader</td>
<td>331</td>
</tr>
</tbody>
</table>

Part V Towards the synthetic biology of minimal cells

| 14 A panoramic view of synthetic biology | 333 |
| Introduction | 335 |
| 14.1 Main strategies and perspectives of synthetic biology | 336 |
| Conversation with Paul Freemont | 338 |
| Conversation with Sarah Lau | 341 |
| 14.2 The case of engineering SB | 345 |
| 14.3 A teaching phenomenon: iGEM | 350 |
# Table of Contents

**Side Box 14.1 Recent iGEM activities** 352  
14.4 More on epistemology 355  
14.5 Chemical SB 357  
14.6 The never born proteins 360  
14.7 The never born RNA 366  
Concluding remarks 367  

15 The minimal cell 369  
Introduction 369  
*Conversation with Harold Morowitz* 371  
15.1 The notion of the minimal cell 373  
15.2 The minimal genome 377  
15.3 The road map to the minimal cell: protein expression in vesicles 378  
15.4 A confederacy of protocells 383  
15.5 About the statistics of entrapment 387  
15.6 A story of spontaneous overcrowding 389  
15.7 The origin of metabolism? 395  
15.8 And (why not?) the origin of life? 396  
Concluding remarks 397  
Questions – and research proposals – for the reader 398  
As a way of conclusion 400  

**Appendix The open questions about the origin of life** 404  
Selection of the open questions presented in the OQOL Workshop of Erice – 2006 405  
Selection of the open questions presented in the OQOL Workshop of San Sebastian – 2009 409  
Selection of the open questions presented in the OQOL Workshop of Leicester – 2012 413  
Selection of the open questions presented in the OQOL Workshop of Nara – 2014 415  

References 419  
Names index 457  
Subject index 461