CONTINUUM MECHANICS
Foundations and Applications of Mechanics
Volume I, Third Edition

C. S. Jog
To

My Parents and IISc
Contents

List of Figures \hspace{1cm} x
List of Tables \hspace{1cm} xv
Preface \hspace{1cm} xvii
Notation \hspace{1cm} xxi

1 Introduction to Tensors \hspace{1cm} 1
\hspace{1cm} 1.1 Vector Spaces \hspace{1cm} 1
\hspace{1cm} 1.2 Vectors in \mathbb{R}^3 \hspace{1cm} 8
\hspace{1cm} 1.3 Second-Order Tensors \hspace{1cm} 12
\hspace{1cm} \hspace{1cm} 1.3.1 The tensor product \hspace{1cm} 15
\hspace{1cm} \hspace{1cm} 1.3.2 Principal invariants of a second-order tensor \hspace{1cm} 17
\hspace{1cm} \hspace{1cm} 1.3.3 Inverse of a tensor \hspace{1cm} 20
\hspace{1cm} \hspace{1cm} 1.3.4 Eigenvalues and eigenvectors of tensors \hspace{1cm} 27
\hspace{1cm} 1.4 Skew-Symmetric Tensors \hspace{1cm} 29
\hspace{1cm} 1.5 Orthogonal Tensors \hspace{1cm} 31
\hspace{1cm} 1.6 Symmetric Tensors \hspace{1cm} 40
\hspace{1cm} \hspace{1cm} 1.6.1 Principal values and principal directions \hspace{1cm} 40
\hspace{1cm} \hspace{1cm} 1.6.2 Positive definite tensors and the polar decomposition \hspace{1cm} 48
\hspace{1cm} \hspace{1cm} 1.6.3 Isotropic functions \hspace{1cm} 53
\hspace{1cm} 1.7 Higher-Order Tensors \hspace{1cm} 60
\hspace{1cm} 1.8 Isotropic Tensors \hspace{1cm} 77
\hspace{1cm} 1.9 Differentiation of Tensors \hspace{1cm} 80
\hspace{1cm} \hspace{1cm} 1.9.1 The directional derivative \hspace{1cm} 81
\hspace{1cm} \hspace{1cm} 1.9.2 Product rule \hspace{1cm} 83
\hspace{1cm} \hspace{1cm} 1.9.3 Chain rule \hspace{1cm} 84
\hspace{1cm} \hspace{1cm} 1.9.4 Gradient, divergence and curl \hspace{1cm} 85
\hspace{1cm} \hspace{1cm} 1.9.5 Examples \hspace{1cm} 97
\hspace{1cm} 1.10 The Exponential and Logarithmic Functions \hspace{1cm} 99
\hspace{1cm} 1.11 Divergence and Stokes’ Theorems \hspace{1cm} 117
\hspace{1cm} 1.12 Groups \hspace{1cm} 119

2 Kinematics \hspace{1cm} 137
\hspace{1cm} 2.1 Lagrangian and Eulerian Descriptions \hspace{1cm} 137
\hspace{1cm} 2.2 Length, Area and Volume Elements in the Deformed Configuration \hspace{1cm} 139
Contents

2.2.1 Length element in the deformed configuration: Strain tensors 140
2.2.2 Area element in the deformed configuration: The Piola transform 146
2.2.3 Volume element in the deformed configuration 149

2.3 Velocity and Acceleration 149
2.4 Rate of Deformation 151
2.5 Examples of Simple Motions 160
2.5.1 Pure extension 160
2.5.2 Rigid body motion 162
2.5.3 Simple shear 162

3 Balance Laws 166
3.1 The First Transport Theorem 167
3.2 Conservation of Mass 168
3.2.1 Lagrangian version 168
3.2.2 Eulerian version 169
3.3 The Second Transport Theorem 170
3.4 Generalized Transport Theorems 170
3.5 Balance of Linear Momentum 172
3.6 Balance of Angular Momentum 178
3.7 Properties of the Cauchy Stress Tensor 181
3.8 The Equations of Motion in the Reference Configuration 185
3.9 Variational Formulations 188
3.10 Energy Equation 191
3.11 Control Volume Form of the Balance Laws 199

4 Constitutive Equations 203
4.1 Frame of Reference 203
4.2 Transformation of Kinematical Quantities 206
4.3 Principle of Frame-Indifference 208
4.4 Principle of Material Frame-Indifference 219
4.5 Constitutive Relations for Simple Materials 222
4.6 Material Symmetry 226
4.7 Classification of Materials 231

5 Nonlinear Elasticity 240
5.1 Isotropic Elastic Particles 240
5.2 The Constitutive Equation of an Isotropic Solid for ‘Small’ Deformations 244
5.3 Bounds on the Lamé Constants 246
5.4 Hyperelastic Solids 247
Contents

5.5 Isotropic Hyperelastic Solids 253
5.6 St Venant–Kirchhoff Material 257
5.7 Examples of Nonlinear Compressible Hyperelastic Models 259
5.8 The Elasticity Tensors 263
5.9 Elastic and Material Stability 270
5.10 Nonuniqueness of Solutions in Elasticity 282
5.11 Exact Solutions for Homogeneous, Compressible, Isotropic Elastic Materials 283
 5.11.1 Uniaxial stretch 284
 5.11.2 Pure shear 285
 5.11.3 Pure bending of a prismatic beam made of a particular St Venant–Kirchhoff material 287
 5.11.4 Torsion of a circular shaft made of a St Venant–Kirchhoff material 289
5.12 Exact Solutions for Homogeneous, Incompressible, Isotropic Elastic Materials 290
 5.12.1 Bending and stretching of a rectangular block 292
 5.12.2 Straightening, stretching and shearing a sector of a cylinder 294
 5.12.3 Torsion, inflation, bending, etc. of an annular wedge 295
 5.12.4 Inflation/eversion of a spherical shell 300

6 Linearized Elasticity 308
6.1 Kinematics 308
6.2 Governing Equations 315
6.3 Energy and VariATIONAL Formulations in Linearized Elasticity 322
 6.3.1 Single-field variational formulation 323
 6.3.2 Two-field and three-field variational formulations 329
6.4 Uniqueness of Solution 331
6.5 Exact Solutions of some Special Problems in Elasticity 333
 6.5.1 Torsion of a circular cylinder 333
 6.5.2 Torsion of non-circular bars–Saint-Venant theory of torsion 335
 6.5.3 Generalization of the Saint-Venant torsion theory to an anisotropic, inhomogeneous bar 357
 6.5.4 Torsion of circular shafts of variable diameter 371
 6.5.5 Pure bending of prismatic beams 387
 6.5.6 Bending of prismatic beams by terminal loads 392
 6.5.7 Hollow sphere subjected to uniform pressure/Gravitating sphere 425
6.6 General Solutions for Elastostatics using Potentials 427
 6.6.1 Cylindrical/elliptical elastic inclusion in an infinite domain with a uniform state of stress at infinity 463
 6.6.2 Rectangular domain (e.g., cantilever beam) loaded by tractions on its edges 479
Contents

6.6.3 Circular disc loaded by a traction distribution on its rim 506
6.6.4 Wedge loaded by traction distributions on its edges 510
6.6.5 Thermal stresses 537
6.6.6 Thick hollow cylinder subjected to a linearly varying pressure on the inner and outer surfaces 540
6.6.7 Sphere/spherical segment spinning about its axis 542
6.6.8 Circular cylinder with loading on its end faces, and lateral surfaces traction-free 546
6.6.9 Circular cylinder with loading on the lateral surface, and end surfaces traction-free (‘Filon’s problem’) 553
6.6.10 Clamped and simply supported circular cylinders 560
6.6.11 Circular cylinder spinning about its axis 565
6.6.12 Circular cylinder on a frictionless surface loaded under its own weight 568
6.6.13 Point load in an infinite elastic body (Kelvin problem) 572
6.6.14 Point load acting normal to the boundary of an infinite half-space (Boussinesq problem) 574
6.6.15 Truncated cone 575
6.6.16 Contact problems on a finite domain 589
6.6.17 Spherical cavity in an infinite domain with a uniaxial state of stress at infinity 594
6.6.18 Prolate or oblate spheroidal cavity in an infinite domain with a uniform stress state at infinity 599
6.6.19 Point load acting tangential to the boundary of an infinite half-space (Cerruti problem) 603

6.7 Elastodynamics 605
6.7.1 Progressive waves 605
6.7.2 Solution to special problems 607

7 Thermomechanics 686
7.1 Thermoelastic materials 686
7.2 Viscoplastic materials 695
7.3 Restrictions on the constitutive relations for fluids 699
7.3.1 Thermodynamic relations for a perfect gas 713
7.3.2 The Navier–Stokes and energy equations 715
7.3.3 Summary of the governing equations for a Newtonian fluid 715

8 Rigid-Body Dynamics 718
Example 1: Central-force motion 725
Example 2: Cylinder rolling down a plane 727
Example 3: Sliding rod 728
Contents

<table>
<thead>
<tr>
<th>Example</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4: Motion of a sleigh</td>
<td>730</td>
</tr>
<tr>
<td>5: Spinning disc</td>
<td>732</td>
</tr>
<tr>
<td>6: Spinning top</td>
<td>734</td>
</tr>
<tr>
<td>7: Force on a bar</td>
<td>736</td>
</tr>
<tr>
<td>8: Rotating bar</td>
<td>737</td>
</tr>
<tr>
<td>9: Slider-crank mechanism</td>
<td>738</td>
</tr>
</tbody>
</table>

Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Orthogonal Curvilinear Coordinate Systems</td>
<td>742</td>
</tr>
<tr>
<td>B Cylindrical Coordinate System</td>
<td>751</td>
</tr>
<tr>
<td>C Spherical Coordinate System</td>
<td>756</td>
</tr>
<tr>
<td>D Elliptic Cylindrical Coordinate System</td>
<td>760</td>
</tr>
<tr>
<td>E Bipolar Cylindrical Coordinate System</td>
<td>764</td>
</tr>
<tr>
<td>F Prolate Spheroidal Coordinate System</td>
<td>768</td>
</tr>
<tr>
<td>G Oblate Spheroidal Coordinate System</td>
<td>772</td>
</tr>
<tr>
<td>H Arbitrary Curvilinear Coordinate Systems</td>
<td>776</td>
</tr>
<tr>
<td>I Matrix Representations of Tensors for Engineering Applications</td>
<td>789</td>
</tr>
<tr>
<td>J Some Results in n-Dimensional Euclidean Spaces</td>
<td>802</td>
</tr>
<tr>
<td>K A Note on Boundary Conditions</td>
<td>820</td>
</tr>
</tbody>
</table>

Bibliography

- Page 825

Index

- Page 847
List of Figures

1.1 Example of a coordinate system obtained from an existing one by a rotation about the 3-axis.

2.1 Reference and deformed configurations.

2.2 Simple shear.

3.1 The traction vector on two different surfaces having the same normal at a point.

3.2 Tetrahedral element used in Cauchy’s proof.

3.3 Tetrahedral element with $n_2 < 0$.

3.4 Traction vectors and the corresponding stress components on an element with $t^{(i)}$ denoting $t(x, t, e_i)$. Tractions and stresses on a hidden face are equal and opposite to those on the corresponding visible face having an opposite normal.

3.5 Principle of action and reaction.

3.6 Applied body force and tractions in the reference and deformed configurations.

3.7 Rotating bar.

3.8 Problem 4.

4.1 Frames of reference.

4.2 Two observers in (a) translatory; (b) translatory and rotatory relative motion.

4.3 Change of observer can be given the alternative interpretation of a superposed rigid body motion.

4.4 Body forces experienced by a point on a spinning disc.

4.5 Flow in a pipe spinning about two axes; the origins of the $e_r-e_0-e_z$ and XYZ frames are shown separated simply for clarity, although actually they coincide.

4.6 Stress response with respect to two different reference configurations.

5.1 Examples of elastic instabilities: (a) buckling; (b) barrelling; (c) symmetric bifurcation.

5.2 Anomalous behavior of a St Venant–Kirchhoff material under uniaxial compression.

5.3 Lowest eigenvalue of $2J_{\text{sym}}S$ as a function of the axial stretch for a St Venant–Kirchhoff material under uniaxial compression ($E = 2 \times 10^{11}$ and $v = 0.25$).

5.4 The longitudinal Cauchy and Kirchhoff stresses as a function of $\log \lambda_3$ for a St Venant–Kirchhoff material under uniaxial compression ($E = 2 \times 10^{11}$ and $v = 0.25$).
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>Lowest eigenvalue of SAS as a function of the stretch for a cube made of a compressible Mooney–Rivlin material subjected to equibiaxial extension. 280</td>
</tr>
<tr>
<td>5.6</td>
<td>A cube made of a compressible Mooney–Rivlin material loaded by tensile in-plane and compressive out-of-plane loads. 280</td>
</tr>
<tr>
<td>5.7</td>
<td>Lowest eigenvalue of SAS as a function of the in-plane stretch for a cube made of a compressible Mooney–Rivlin material subjected to the loading shown in Fig. 5.6. 281</td>
</tr>
<tr>
<td>5.8</td>
<td>Lowest eigenvalue of SAS as a function of the axial stretch for a cube made of Ogden material subjected to triaxial extension. 282</td>
</tr>
<tr>
<td>5.9</td>
<td>Prismatic bar undergoing uniaxial stretch. 284</td>
</tr>
<tr>
<td>5.10</td>
<td>A block subjected to pure shear. 286</td>
</tr>
<tr>
<td>5.11</td>
<td>Bending of a prismatic beam of rectangular cross-section made of a St Venant–Kirchhoff material with $v = 0$ into a circular arc; the lower and upper surfaces are assumed to be at distances of h_1 and h_2, respectively, in the undeformed configuration ($h_1 + h_2 = h$). 288</td>
</tr>
<tr>
<td>5.12</td>
<td>Forces and moments acting on an annular wedge. 291</td>
</tr>
<tr>
<td>5.13</td>
<td>Bending and stretching of a rectangular block. 293</td>
</tr>
<tr>
<td>5.14</td>
<td>Traction on the faces of a block undergoing simple shear. 306</td>
</tr>
<tr>
<td>5.15</td>
<td>Deformation of a circular disc to a spherical cap. 306</td>
</tr>
<tr>
<td>6.1</td>
<td>Two-bar truss subjected to thermal loading. 329</td>
</tr>
<tr>
<td>6.2</td>
<td>Torsion of a circular cylinder. 334</td>
</tr>
<tr>
<td>6.3</td>
<td>Cross-section of a non-circular cylinder undergoing torsion. 335</td>
</tr>
<tr>
<td>6.4</td>
<td>A bar of triangular cross-section undergoing torsion. 345</td>
</tr>
<tr>
<td>6.5</td>
<td>Torsion of a bar whose cross-section is an isosceles right-angled triangle. 346</td>
</tr>
<tr>
<td>6.6</td>
<td>Groove in a circular shaft undergoing torsion. 347</td>
</tr>
<tr>
<td>6.7</td>
<td>Rectangular bar undergoing torsion. 348</td>
</tr>
<tr>
<td>6.8</td>
<td>An annular sector subjected to torsion. 350</td>
</tr>
<tr>
<td>6.9</td>
<td>Torsion of a beam whose cross-section is a cardioid. 355</td>
</tr>
<tr>
<td>6.10</td>
<td>Composite elliptical beam undergoing torsion; the ellipses are similar. 360</td>
</tr>
<tr>
<td>6.11</td>
<td>Composite elliptical beam undergoing torsion; the ellipses are confocal. 361</td>
</tr>
<tr>
<td>6.12</td>
<td>Composite rectangular bar undergoing torsion. 364</td>
</tr>
<tr>
<td>6.13</td>
<td>Torsion of a composite bar where sections are bounded by eccentric circles. 366</td>
</tr>
<tr>
<td>6.14</td>
<td>Conical shaft subjected to end twisting moments. 376</td>
</tr>
<tr>
<td>6.15</td>
<td>Circular cylinder with generating surface $zr^4 = k$ subjected to torsion. 378</td>
</tr>
<tr>
<td>6.16</td>
<td>A shaft whose generating surface is a hyperbola subjected to end twisting moments. 381</td>
</tr>
<tr>
<td>6.17</td>
<td>Truncated hollow sphere subjected to torsion. 383</td>
</tr>
<tr>
<td>6.18</td>
<td>Truncated hollow shell subjected to torsion. 387</td>
</tr>
<tr>
<td>6.19</td>
<td>A planar domain A and parallel set of axes x-y and x'-y'. 388</td>
</tr>
</tbody>
</table>
List of Figures

6.20 A prismatic beam subjected to a bending moment. 389
6.21 Neutral plane. 391
6.22 An inclined rectangular beam undergoing pure bending. 392
6.23 Bending of a prismatic beam by terminal loads. 392
6.24 Bar with elliptical cross-section acted upon by a terminal load. 402
6.25 Bending of a hollow circular cylinder by a terminal load \(P \). 405
6.26 Flexure of a hollow shaft with a circular cavity placed eccentrically. 406
6.27 Bar whose cross-section is an equilateral triangle acted upon by a statically equivalent load \(P \) through its centroid. 408
6.28 Bar whose cross-section is an isosceles triangle acted upon by a statically equivalent load \(P \) through \(y = y_0 \). 410
6.29 Beam of triangular cross-section loaded by a statically equivalent load \(P \) along the \(y \)-axis. 411
6.30 Bar of rectangular cross-section acted upon by a statically equivalent load \(P \) through its centroid. 412
6.31 Bar of semi-circular cross-section. 414
6.32 An annular sector subjected to bending by terminal loads. 417
6.33 Flexure of a beam whose cross-section is a cardioid. 422
6.34 Bar of semi-parabolic cross-section. 424
6.35 Hollow cylinder of length \(L \) fixed at the inner boundary \(r = a \), and subjected to a moment \(M \) on the outer boundary \(r = b \). 445
6.36 Cylindrical inclusion in an infinite domain with a uniaxial state of stress at infinity. 463
6.37 Cylindrical inclusion in an infinite domain with a state of pure shear at infinity. 465
6.38 Cylindrical inclusion in an infinite domain with a bending moment at infinity. 467
6.39 Elliptical hole in an infinite domain with a state of simple tension at infinity. 469
6.40 Crack subjected to a uniform far-field loading orthogonal to the crack. 472
6.41 Rectangular domain with top and bottom edges traction-free. 479
6.42 A traction boundary value problem on a rectangular domain with the edges \(y = \pm h/2 \) traction-free; shear tractions although possibly applied at \(x = \pm L/2 \) are not shown. 484
6.43 Rectangular domain with a traction-free right edge. 487
6.44 Cantilever beam loaded under its own weight. 489
6.45 Double cantilever beam with prescribed tractions on the top and bottom surfaces. 490
6.46 Beam resting on a frictionless contact surface with prescribed traction on the top, and lateral surfaces traction-free. 493
6.47 Simply supported beam subjected to uniform normal traction on its top edge. 500
6.48 Simply supported beam subjected to a line load \(W \) on its top edge. 502
List of Figures

6.49 Simply supported beam subjected to point loads on its top and bottom edges; the loading is split into symmetric and antisymmetric loading cases as shown. 504
6.50 Variation of R with $2y/h$. 505
6.51 Circular disc under gravity load. 508
6.52 Wedge subjected to tractions on its edges. 510
6.53 Curved cantilever beam subjected to terminal loads. 513
6.54 An infinite wedge subjected to tractions at the surface $r = a$. 516
6.55 Domains with crack faces at $\theta = \pm \pi$ and arbitrary loading on the edges. 522
6.56 Curved cantilever beam subjected to tractions on its curved surfaces $r = a$ and $r = b$. 524
6.57 Domains where part of a straight edge is fixed and the remaining part is traction free (‘cracked’). 525
6.58 Constrained wedge subjected to tractions on its curved edges. 527
6.59 Constrained wedge with roller supports subjected to tractions on its curved edges. 531
6.60 Circular disc subjected to equal and opposite normal tractions on its curved edge. 532
6.61 Circular disc subjected to equal and opposite point loads along its diameter. 534
6.62 Semicircular disc under gravity load. 536
6.63 Thick hollow cylinder subjected to a linearly varying pressure load on the inner and outer surfaces, and a uniform axial traction. 541
6.64 Point load acting in an infinite elastic body. 573
6.65 Point load acting normal to the boundary of a half-space. 574
6.66 Truncated cone. 575
6.67 Truncated cone supported on its lateral surface subjected to gravity loading and to prescribed tractions on its free surfaces. 582
6.68 Segment of a spherical shell supported on its lateral surface subjected to gravity loading and to prescribed tractions on its free surfaces. 583
6.69 Sphere subjected to equal and opposite point loads along its diameter. 586
6.70 Contact problem on a semicircular domain. 590
6.71 Contact problem on a hemispherical domain. 592
6.72 Spherical cavity in an infinite domain with a uniaxial state of stress at infinity. 594
6.73 Spherical cavity in an infinite domain with a state of pure shear at infinity. 596
6.74 Oblate spheroidal cavity in an infinite domain with uniform normal stresses at infinity. 601
6.75 Point load acting tangential to the boundary of a half-space. 603
6.76 Elastic solid of thickness h subjected to a uniform time-varying traction at one end, and fixed at the other. 608
6.77 Displacement and stress plots for the case $T = \sin 3\pi t$ at times $t = 2.5$ and $t = 5.5$. 611
6.78 Elastic bar of length h impacting a rigid wall with velocity V_0. 613
6.79 Stress plots for the case $\alpha = 0$ at times $t = 3$ and $t = 7$. 616
6.80 Stress plots for the case $\alpha = 0.01$ at times $t = 3$ and $t = 7$. 617
6.81 Velocity plots for the case $\alpha = 0.01$ at times $t = 3$ and $t = 7$. 618
6.82 Elastic bar of length h_2 impacting a stationary elastic bar of length h_1 constrained by a rigid wall. 619
6.83 Velocity plots at times 0, 0.5, 2, 6 and 8 for the problem shown in Fig. 6.82. 621
6.84 Stress plots at times 0.5, 2, 6 and 8 for the problem shown in Fig. 6.82. 621
6.85 Elastic bar of length h_1 impacting a moving elastic bar of length h_2. 621
6.86 Velocity plots at times 0.5, 2, 4 and 6 for the problem shown in Fig. 6.85. 623
6.87 Stress plots at times 0.5, 2, 4 and 6 for the problem shown in Fig. 6.85. 623
6.88 Prismatic bar standing on a smooth horizontal surface. 678
6.89 Torque applied on the lateral and end surfaces. 679
6.90 Bending of a rectangular beam. 680
6.91 Problem 8. 680
6.92 Problem 9. 681
6.93 Problem 11. 683
6.94 Problem 12. 683
6.95 Hollow cylinder of length L fixed at the inner boundary $r = a$, and subjected to a shear force T at the outer boundary $r = b$. 685
8.1 Central-force motion. 726
8.2 Cylinder rolling down an inclined plane. 727
8.3 Rod sliding against a wall. 729
8.4 Model of a sleigh. 731
8.5 Spinning disc. 732
8.6 Spinning top. 735
8.7 Bar subjected to point load F and total frictional force $\mu M g$. 737
8.8 Rotating bar. 738
8.9 Slider-crank mechanism. 739
8.10 Oscillating rod. 741
A.1 Physical components of the displacement vector with respect to the undeformed configuration basis vectors. 750
K.1 A solid–fluid or fluid–fluid interface with a discontinuity in velocity at the interface. 821
K.2 Flow in a rotating cylinder. 822
K.3 Newton law of cooling. 823
List of Tables

6.1 First few roots of $\sin z = z$ that lie in the first quadrant of the complex plane. 482
6.2 First few roots of $\sin z = -z$ that lie in the first quadrant of the complex plane. 483
6.3 First few roots of $(3 - v)(1 + v)\cos 2z - 2v(2 - v) + 5 = 0$ (for $v = 0.25$) that lie in the first quadrant of the complex plane. 488
6.4 First few roots of $(3 - v)\sin z = (1 + v)z$ for $v = 0.25$ that lie in the first quadrant of the complex plane. 491
6.5 First twenty roots of $z^2J_0'(z) + [z^2 - 2(1 - v)]J_1'(z) = 0$ for $v = 0.25$. 548
6.6 Variation of displacements with respect to r at $z = \pm 0.6$ for the problem in [271]. 553
6.7 Normalized τ_{zz} at $r = 0$ and at $r = a$. 561
6.8 Normalized τ_{zz} at $z = L/2$. 561
6.9 Normalized $\tau_{r z}$ at $r = a$. 561
6.10 Normalized $\tau_{r z}$ at $z = L/2$. 562
6.11 Normalized u_z at $r = 0$. 562
6.12 Normalized u_r at $r = a$. 562
6.13 First few roots of $J_0(\lambda) = J_2(\lambda)$. 565
6.14 Variation of normalized displacement and stress components with respect to r at $z/a = 0.8$. 567
6.15 Displacement component u_r. 571
6.16 Displacement component u_z. 571
6.17 Stress component τ_{zz}. 572
6.18 Stress component $\tau_{\theta \theta}$. 572
6.19 Displacements and stresses at various points for the rotating hemisphere problem. 581
6.20 Displacement and stress fields at specific points for the sphere under point loads problem. 587
6.21 Roots of Eqn. (6.534) for typical values of v. 675
J.1 Some examples of real-valued nilpotent and idempotent tensors of various orders. 808
Preface

Apart from the usual goal of presenting a unified treatment of seemingly diverse branches such as solid or fluid mechanics, it is also our goal in this book to discuss some important topics, which have come into prominence in the latter half of the twentieth century, such as material symmetry, frame-indifference and thermomechanics. The use of these principles in tandem (of course, in addition to the usual axioms) in many cases delivers the most powerful and beautiful results.

Chapter 1 presents the necessary mathematical background for the following chapters in the form of a brief introduction to tensor analysis. Almost throughout this chapter, the assumed three-dimensional nature of the vector space is exploited to yield shorter proofs of results which in most (but not all) cases also hold for dimensions other than three. In keeping with modern practice, we emphasize the use of direct as opposed to indicial notation, although in many cases we present the proofs using indicial notation also. Presenting the equations in direct notation reinforces the idea that the governing equations are valid with respect to any set of coordinate axes in a given reference frame. It is beneficial, however, to be adept at the use of both, direct and indicial notation. When presenting equations in indicial form, we use only Cartesian components of tensors since we feel that they are sufficient to present the basic principles of the subject. Although other types of components are useful, especially when dealing with curvilinear coordinate systems, we believe that a detailed discussion of say covariant and contravariant components of tensors right at the outset can digress from the purpose of presenting the main physical concepts, and hence, we present them in an Appendix.

Chapter 2 discusses the branch of continuum mechanics known as kinematics, which deals with purely geometrical notions such as strain, rate of deformation, etc.

Chapter 3 discusses the basic axioms of continuum mechanics, namely the principles of conservation of mass, the principles of balance of linear and angular momentum, and the laws of thermodynamics. The principles of balance of linear and angular momentum in the form that are used today are due to Euler. The fascinating history of his struggle to derive the governing equations for a continuum using the linear balance momentum principle alone, before finally realizing the need for accepting the angular momentum balance as a separate axiom, and how using these two axioms simultaneously yielded a rich cornucopia of results, is outlined in [336].

Euler’s axioms are formulated directly for a ‘large’ or ‘massy’ body. By large or massy, we mean bodies that are large in comparison to atomic dimensions; thus, a speck of dust, for example, would also constitute a large body. In the classical mechanics literature, one often finds ‘derivations’ of Euler’s axioms by considering a continuum as a collection of particles, and by assuming Newton’s laws to hold good for each particle. This approach might seem logical, but is, in fact, completely fallacious [336]. To begin with, Newton’s laws become poorer and poorer approximations as the size of the body is reduced so that one needs to use quantum mechanics to predict the behavior of a particle. Thus, it does not
make sense to deduce laws for a large body by using Newton’s laws for a particle, which in fact do not hold. Worse still, Newton himself never meant a particle when he used the Latin word \textit{particula}\textemdash he used it to mean a small body or an element of integration. On the other hand, Euler’s axioms which are formulated directly for large bodies are known to be very accurate. Thus, it seems that the particle-based approach can be avoided altogether. As demonstrated in Chapter 8, Euler’s axioms yield all the classical equations for rigid body motion (and much more). Of course, in cases where the motion of a body with respect to its center of mass can be neglected, it might be convenient to approximate the body as a particle with its entire mass lumped at a point—this approach, for example, is usually used in deducing the motion of planets around the sun.

Another anachronism in the view of this author, particularly in this post-Einstein era, is the use of inertial and non-inertial frames of reference. In this book we treat all reference frames on an equal footing in the sense that we require that the governing equations have the same form in all reference frames. This requirement yields a relation for the way body forces should transform under a change of frame (see Eqn. (4.18)), which, quite happily, also agrees with physical experience.

A reader may wonder as to what exact role Newton’s laws, which one generally learns during high school, and which are proclaimed to be basic, play in continuum mechanics. The answer is that although one does not use Newton’s laws directly, one does obtain statements close in spirit to Newton’s laws from Euler’s axioms. To see this, let us consider Newton’s laws. The first law states that ‘A body continues in a state of rest or of uniform motion in a straight line unless acted upon by a net external force’. The part about the ‘straight line motion’ is not strictly true for bodies, since a body which is rotating in the absence of any forces would continue to rotate. Hence, modern treatments modify this statement and replace ‘body’ by ‘particle’. Since our purpose in continuum mechanics is to study large bodies and not particles, and since we have already indicated that classical laws may no longer hold when one considers particles, this law is not directly used in our formulation. The second law which is again claimed to hold good for a particle, and which states that ‘force is equal to mass times acceleration of a particle’ is now obtained in a form which holds directly for the body; the acceleration is that of the center of mass (see Eqn. (3.16)). The third law which states that ‘action and reaction are equal and opposite’, is obtained in the form given by Eqn. (3.25).

It should be recognized that Euler’s axioms are nontrivial generalizations of Newton’s laws. In particular, the axioms are required to hold for any arbitrary sub-part of a body. It is precisely this feature (along with the Cauchy principle) that yields the governing differential equations from the integral form of the equations.

A new era in continuum mechanics began around 1955 with the works of Walter Noll. He proposed an axiomatization for forces, the principle of material-frame indifference, and group-theoretic definitions for simple solids and fluids, among numerous other things. Along with Bernard Coleman, he was also instrumental in using the second law of thermodynamics to deduce restrictions on constitutive relations. Constitutive relations had been treated in a very empirical way until their seminal work in which they showed how the use of material frame-indifference, material symmetry and the second law of thermodynamics can help restrict (and in some cases, even yield the final form of) constitutive relations. Chapter 4 discusses the concepts of material frame-indifference and material symmetry, and shows how these concepts can be applied to elastic materials when thermal effects are ignored. In Chapters 5, the nonlinear theory of elasticity is
presented, while in Chapter 6, the classical theory of linear elasticity is obtained by linearizing the governing equations of nonlinear elasticity.

In Chapter 7, we discuss the very important topic of thermomechanics. To those seeking a rigorous treatment of thermodynamics, the treatment in standard works, with their liberal use of d, Δ, and δ, has always seemed obscure [335]. In particular, the usual treatment of the second law of thermodynamics has come in for severe criticism, with the definition of the entropy function itself in terms of reversible processes, while the processes that one is trying to model are usually highly irreversible. A lot of work has been done in the past few decades to remedy this unsatisfactory state of affairs—the modern theory may be found, for example, in [295]. Although the mathematics used in proving the various theorems is nontrivial, those concerned with applications may effectively assume (as we do) the Clausius–Duhem inequality as a statement of the second law of thermodynamics. We discuss the restrictions imposed by this inequality on solids and fluids. Quite amazingly, all the classical results, which had historically been obtained either empirically or through ad hoc means, are now recovered using rigorous arguments. In particular, in the case of fluids, we recover the entire classical theory as a special case, including the Gibbs relation, the fact that pressure is a state function of density and temperature, the constitutive relation for the viscous stress, the relation between the entropy and the free energy, and so on.

A point of elementary logic that we wish to stress is that the statement “A implies B” is logically equivalent to the statement “not B implies not A”. Thus, we shall often prove that A implies B by assuming ‘not B’ and deducing ‘not A’.

Continuum mechanics and fluid mechanics are classical subjects with a huge amount of literature, and this author has naturally benefitted by reading a part of this literature. The main works that have been consulted in writing this book are stated in the bibliographies in the two volumes; the author is greatly indebted to their authors. The author is also indebted to his teachers at the Theoretical and Applied Mechanics Department (now merged with Mechanical Engineering), University of Illinois at Urbana-Champaign, in particular, Professor D. E. Carlson, R. B. Haber, R. E. Johnson and R. T. Shield. Professor D. E. Carlson was kind enough to give the author a copy of his unpublished notes; Sections 1.12, 4.6 and 4.7 are based on these notes, and the author thanks him for granting permission to use them1. The author is thankful to the Mechanical Engineering Department at the Indian Institute of Science for having provided a stimulating environment during the development of this book. The author gratefully acknowledges the tremendous effort put in by Professor Annem Narayana Reddy of IIT(G) in designing and developing a web-based NPTEL course based primarily on this book. Students who have taken the continuum mechanics course offered by this author or worked on projects offered by him have made many valuable suggestions and comments which have resulted in a vast improvement in the book, and the author wishes to thank all of them. The author expresses his thanks to Cambridge University Press for agreeing to publish this book, and for their kind cooperation. Special thanks go to the Commissioning Editor Gauravjeet Singh Reen, Assistant Editors (Academic) Sana Banot and Shikha Vats, and their team for their tireless efforts in bringing this project to fruition. The entire book was typeset in the Linux environment using \LaTeX—the author expresses his gratitude to the creators of these fine pieces of software. He also expresses his

1Professor Carlson passed away in August 2010. His notes are now available online at http://imechanica.org/node/15845, courtesy of Professor Amit Acharya.
gratitude to the creators of that jewel in the crown, Mathematica [353], which he used extensively in writing Chapter 6 and parts of Volume II. Finally, the author wishes to thank his family for having supported him through the writing of this book.

Suggestions and comments for improving this book are welcome.
Notation

\(a\): acceleration vector
\(b\): body force vector per unit mass
\(B\): left Cauchy–Green strain tensor
\(c_p\): specific heat at constant pressure
\(c_v\): specific heat at constant volume
\(C\): first elasticity tensor
\(C\): second elasticity tensor
\(C\): right Cauchy–Green strain tensor
\(\chi\): mapping characterizing the deformation
\(D/Dt\): material derivative
\(D\): rate-of-deformation tensor
\(e\): specific internal energy
\(e_i\): Cartesian basis vectors
\(E\): Green strain tensor
\(E\): Almansi strain tensor
\(F\): deformation gradient
\(g\): temperature gradient
\(\gamma\): ratio of specific heats \(c_p/c_v\)
\(\Gamma\): circulation
\(h\): specific enthalpy
\(\eta\): angular momentum
\(\eta\): specific entropy
\(J\): determinant of \(F\)
\(J\): inertia tensor relative to the center of mass
\(K\): kinetic energy
\(\kappa\): bulk viscosity
\(l\): linear momentum
\(L\): velocity gradient tensor
\(\lambda\): dilatational viscosity; also Lame constant
<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>unit tangent to a contour</td>
</tr>
<tr>
<td>μ</td>
<td>shear or dynamic viscosity; also Lame constant</td>
</tr>
<tr>
<td>n</td>
<td>unit normal to a surface</td>
</tr>
<tr>
<td>ν</td>
<td>kinematic viscosity</td>
</tr>
<tr>
<td>p</td>
<td>thermodynamic pressure</td>
</tr>
<tr>
<td>\hat{p}</td>
<td>mean pressure</td>
</tr>
<tr>
<td>q</td>
<td>heat flux vector</td>
</tr>
<tr>
<td>Q_h</td>
<td>heat generated per unit mass per unit time</td>
</tr>
<tr>
<td>Q</td>
<td>orthogonal tensor</td>
</tr>
<tr>
<td>θ</td>
<td>absolute temperature</td>
</tr>
<tr>
<td>R</td>
<td>universal gas constant</td>
</tr>
<tr>
<td>ρ</td>
<td>density</td>
</tr>
<tr>
<td>S</td>
<td>control surface</td>
</tr>
<tr>
<td>$S(t)$</td>
<td>surface of material volume</td>
</tr>
<tr>
<td>\mathbf{S}</td>
<td>second Piola–Kirchhoff stress tensor</td>
</tr>
<tr>
<td>σ</td>
<td>viscous stress tensor</td>
</tr>
<tr>
<td>t</td>
<td>time</td>
</tr>
<tr>
<td>t</td>
<td>traction vector</td>
</tr>
<tr>
<td>T</td>
<td>first Piola–Kirchhoff stress tensor</td>
</tr>
<tr>
<td>τ</td>
<td>Cauchy stress tensor</td>
</tr>
<tr>
<td>u</td>
<td>displacement vector</td>
</tr>
<tr>
<td>v</td>
<td>velocity vector</td>
</tr>
<tr>
<td>v</td>
<td>specific volume</td>
</tr>
<tr>
<td>V</td>
<td>vector space</td>
</tr>
<tr>
<td>$V(t)$</td>
<td>material volume</td>
</tr>
<tr>
<td>V_t</td>
<td>control volume</td>
</tr>
<tr>
<td>\hat{W}</td>
<td>stored energy function</td>
</tr>
<tr>
<td>\mathbf{W}</td>
<td>vorticity tensor</td>
</tr>
<tr>
<td>\mathbf{W}</td>
<td>the skew tensor $\dot{\mathbf{Q}}\mathbf{Q}^T$</td>
</tr>
<tr>
<td>ω</td>
<td>vorticity vector (axial vector of $2\mathbf{W}$)</td>
</tr>
<tr>
<td>ω</td>
<td>angular velocity (axial vector of $\dot{\mathbf{Q}}\mathbf{Q}^T$)</td>
</tr>
<tr>
<td>$\mathbf{\Omega}$</td>
<td>axial vector of $\mathbf{Q}^T\dot{\mathbf{Q}}$ (equal to $\dot{\mathbf{Q}}^T\omega$)</td>
</tr>
<tr>
<td>x</td>
<td>spatial coordinates</td>
</tr>
<tr>
<td>\bar{x}</td>
<td>center of mass</td>
</tr>
<tr>
<td>X</td>
<td>material coordinates</td>
</tr>
<tr>
<td>ψ</td>
<td>free energy</td>
</tr>
</tbody>
</table>
Sets

\text{Lin} = \text{Set of all tensors}

\text{Lin}^+ = \text{Set of all tensors } T \text{ with } \det T > 0

\text{Sym} = \text{Set of all symmetric tensors}

\text{Psym} = \text{Set of all symmetric, positive definite tensors}

\text{Orth} = \text{Set of all orthogonal tensors}

\text{Orth}^+ = \text{Set of all rotations } (QQ^T = I \text{ and } \det Q = +1)

\text{Skw} = \text{Set of all skew-symmetric tensors}

\text{Unim} = \text{Set of all unimodular tensors } (|\det H| = +1)

\text{Unim}^+ = \text{Set of all proper unimodular tensors } (\det H = +1)