
1 Kinematics and Governing
Equations

In this chapter, we quickly recapitulate the kinematics and governing equations for a fluid,
which have been discussed in detail in Vol. I. We first state without proof some of the
tensor identities discussed in Vol. I, which are of use in the subsequent discussion.

1.1 Tensor Identities

If Q is a proper orthogonal tensor, and u and v are arbitrary vectors, then

Qpu� vq � pQuq � pQvq (Eqn. (1.94) in Vol. I). (1.1)

If W is a skew-symmetric tensor, and w is its axial vector, then

wi � �1
2

εijkWjk,

Wij � �εijkwk,
(1.2)

where

ε123 � ε231 � ε312 � 1

ε132 � ε213 � ε321 � �1

εijk � 0 otherwise.

If u, v are arbitrary vector fields, and ω �∇� u, then

p∇uqu � 1
2
∇pu � uq � u�ω, (1.3)

∇2u �∇p∇ � uq �∇�ω, (1.4)

∇� rp∇uqus � p∇ � uqω� p∇ωqu� p∇uqω, (1.5)

∇� pu� vq � p∇uqv� p∇ � vqu� p∇ � uqv� p∇vqu. (1.6)

Let S represent the surface of a volume V, n represent the unit normal to the surface, φ a
scalar field, u a vector field, and T a second-order tensor field all of which are continuous
and differentiable. Then, we have

Divergence theorem (also known as Gauss’ theorem)»
V
∇φ dV �

»
S

φn dS. (1.7)
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2 Fluid Mechanics

»
V
∇ � u dV �

»
S

u � n dS. (1.8)

Stokes’ theorem

Let C be a contour, and S be the area of any arbitrary surface enclosed by the contour C.
Then,¾

C

u � dx �
»

S
p∇� uq � n dS, (1.9)

¾
C

u� dx �
»

S

�
p∇ � uqn� p∇uqTn

�
dS. (1.10)

1.2 Kinematics

1.2.1 Lagrangian and Eulerian descriptions

Consider a blob of fluid occupying a region in space V0, and undergoing motion due to
the action of some forces so as to occupy a different region of space Vptq, as shown in
Fig. 1.1. The initial configuration V0 can be taken to be reference configuration with respect
to which the deformations in the current configuration Vptq are measured. The choice of
the reference configuration is arbitrary, and as a matter of convenience, the time is set at
t � 0 at this configuration. As shown, a particle with a position vector X in the refer-
ence configuration V0 occupies the position x in the current configuration Vptq. We shall

Fig. 1.1 Reference and current configurations.
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Kinematics and Governing Equations 3

find it convenient to identify points of the body with the positions that they occupy in the
reference configuration. Thus, points X P V0 will often be called as material points.

The relation between X and x is expressed as

x � χpX, tq. (1.11)

The coordinates X and x are known as the material and spatial coordinates, respectively. The
mapping χ taking X to x is assumed to be one-to-one and orientation-preserving. Phys-
ically, the restriction that the mapping characterizing the deformation be one-to-one cor-
responds to the requirement that two fluid particles in the reference configuration should
not occupy the same position in the current configuration, and conversely, a fluid particle
in the current configuration cannot occupy two or more positions in the current configu-
ration. Due to the one-to-one nature of the mapping χ, we can invert it to obtain X as a
function of x and t, i.e.,

X � χ�1px, tq.
The formulation in terms of the material coordinates is called as the Lagrangian formulation,
while the formulation in terms of the spatial coordinates is called the Eulerian formulation.
The Lagrangian formulation is the one generally preferred in elasticity since the equations
of equilibrium in the deformed configuration are expressed in terms of the spatial coordi-
nates x, which are themselves unknown. Hence, all the equations are formulated on the
reference domain which is usually taken to be the initial unstressed state. On the other
hand, the Eulerian formulation is preferred for problems in fluid mechanics, where we
observe the flow in a fixed region of space such as a channel or wind-tunnel.

At each point in the domain, we define the deformation gradient F by

Fij :� Bχi
BXj

�

�
���
Bχ1BX1

Bχ1BX2

Bχ1BX3
Bχ2
BX1

Bχ2
BX2

Bχ2
BX3

Bχ3
BX1

Bχ3
BX2

Bχ3
BX3

�
��� .

At a given instant of time, a length element in the deformed configuration dx is related to
a length element in the reference configuration dX by the following relationship:

dx � FdX; dxi � FijdXj �
Bxi
BXj

dXj. (1.12)

As discussed in Vol. I, we require the deformation to be orientation-preserving, i.e., (de-
noting det F by J)

J ¡ 0 @X P V0. (1.13)

Given a material field φpX, tq, the particle or material derivative of that field, denoted by
Dφ{Dt, is defined as the partial derivative of φ with respect to time, i.e.,

Dφ

Dt
:�

�Bφ

Bt



X

.
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4 Fluid Mechanics

In the Lagrangian approach, the velocity and acceleration are defined as the first and sec-
ond material derivatives, respectively, of the mapping χ, i.e.,

ũpX, tq � Dχ

Dt
�

�Bχ

Bt



X

,

ãpX, tq � Dũ
Dt

�
�Bũ
Bt



X
�

�B2χ

Bt2



X

.

However, in fluid mechanics the problem with finding the velocities and accelerations from
the above formulae is that, in general, at any given time t, we do not know the reference
position X occupied by a particle now at x. In such a case, the computation can be carried
out using the Eulerian approach, in which the field quantities are now expressed as func-
tions of the spatial position x and time. Since X � χ�1px, tq, the Eulerian description of the
velocity is given by

upx, tq � ũpX, tq � ũpχ�1px, tq, tq.

In general, the functions ũ and u are different, though of course, their values at some mate-
rial point X, and the corresponding spatial point x � χpX, tq, are the same. For an example,
see Vol. I.

The expression for the acceleration using the spatial description of the velocity upx, tq,
is given by

apx, tq �
�Bu
Bt



x
� p∇xuqu. (1.14)

The above expression for the acceleration shows that one has to distinguish between the
acceleration of a particle, and the local rate of change of velocity pBu{Btqx at a point. For
example, in a steady flow, the local rate of change of velocity at any point is zero. However,
this does not mean that the acceleration of a fluid particle passing through that point is zero,
since its velocity can change as it moves to a different position. We shall henceforth write
pB{Btqx and ∇x simply as B{Bt and ∇, respectively.

One can compute the material derivative of any spatial field (also referred to as to-
tal, Eulerian or convective derivative), be it scalar, vector or tensor-valued, in a manner
analogous to that above. For example, if φpx, tq is a scalar-valued field, then its material
derivative is given by

Dφ

Dt
� Bφ

Bt
� Bφ

Bxi

Bχi
Bt

� Bφ

Bt
� u � p∇φq. (1.15)
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Kinematics and Governing Equations 5

1.2.2 Flow lines

The three kinds of flow trajectories commonly used to describe a flow are

1. Pathlines: A pathline gives the trajectory of a fluid particle as it flows. The initial
position of the particle X is assumed to be fixed, and the trajectory is obtained as
a function of time. If xptq � χpX, tq denotes the trajectory of the particle then the
governing differential equation for a pathline is given by

dxptq
dt

�
�Bχ

Bt



X
� upx, tq, (1.16)

which is solved subject to the initial condition xp0q � X.

2. Streamlines: Streamlines are lines whose tangent is everywhere parallel to the velocity
vector at any given instant t. Since the velocity is a function of position and time, the
streamlines can change from instant to instant. If xpsq represents the equation of a
streamline as a function of the arc length s, the tangent to a streamline is given by
λ � dx{ds. Since the velocity vector is parallel to the tangent vector at each point, the
parametric equation of a streamline at an instant of time t0 is given by

dxpsq
ds

� upxpsq, t0q. (1.17)

In component form, the equation of a streamline is given by

dx1

u1
� dx2

u2
� dx3

u3
. (1.18)

3. Streak-lines: A streak-line is a line on which lie those fluid particles that all passed
an injection point x � X (like fluid through the tip of a syringe or smoke from a
candle). The equation of a streakline is found by integrating equation (1.16) subject
to the initial condition x|t�τ � X.

All the above flow lines are identical for steady (time-independent) flow since in that case
we can write upx, tq simply as upxq, so that the parametric equations given by Eqns. (1.16)
and (1.17) are the same, namely dx{dt � upxq.

1.2.3 Analysis of deformation

In this section, we define the rate-of-deformation tensor (also known as rate-of-strain ten-
sor), and vorticity tensors as a function of the velocity gradients.

Rate of deformation

The velocity gradient L is defined as the spatial gradient of the velocity. Thus,

L :�∇xu.
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6 Fluid Mechanics

Equation (1.14) can now be written as

a � Du
Dt

� Bu
Bt
� Lu. (1.19)

L can be split uniquely into a symmetric and antisymmetric part as

L � D�W , (1.20)

where D and W are referred to as the rate-of-deformation and vorticity tensors, respec-
tively, and are given by

D � 1
2
pL� LTq; Dij �

1
2

�
Bui
Bxj

� Buj

Bxi

�
, (1.21)

W � 1
2
pL� LTq; Wij �

1
2

�
Bui
Bxj

� Buj

Bxi

�
. (1.22)

We have the following relations:

DF
Dt

�
�BF
Bt



X
� LF, (1.23a)

DF�1

Dt
�

�
BF�1

Bt

�
X

� �F�1L, (1.23b)

D
Dt

�
DF
Dt



� p∇aqF, (1.23c)

D
Dt

�
FTW F

	
� FT

�
DW
Dt

�W D�DW
�

F, (1.23d)

1
J

DJ
Dt

� 1
J

�B J
Bt



X
� tr L �∇ � u. (1.23e)

From Eqns. (1.23a) and (1.23c), it follows that

∇a � DL
Dt

� L2. (1.24)

Further, by taking the trace of the above relation, we get

Dp∇ � uq
Dt

�∇ � a� L : LT . (1.25)

The above relation can also be derived by taking the divergence of Eqn. (1.19) (see Prob-
lem 9, Chapter 2, Vol. I)

In the fluid-mechanics literature, the rate-of-deformation tensor is often referred to as
the rate-of-strain tensor. The terminology ‘rate-of-strain’ seems to imply that D is actually
the rate of some strain quantity. In reality, it is neither the rate of the small-strain tensor, nor
the rate of the Lagrangian or the Eulerian strain tensors, even in an approximate sense [62].
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Kinematics and Governing Equations 7

Hence, we shall desist from using the terminology ‘rate-of-strain’ for D. It is important to
note that the expression for D given by Eqn. (1.21) is valid for arbitrary deformations, since
no assumption has been made about their magnitude. We now justify the terminology
‘rate-of-deformation’ used for D.

The square of a length of fluid element in the current configuration is given by pdsq2 �
dx � dx. Hence, the material rate of change of pdsq2 is given by

D
Dt
pdsq2 � 2dx � D

Dt
pdxq

� 2dx � D
Dt

pFdXq (by Eqn. (1.12))

� 2dx � DF
Dt

dX (since dX is a constant)

� 2dx � LFdX (by Eqn. (1.23a))

� 2dx � Ldx (by Eqn. (1.12))

� 2dx � pD�Wqdx (by Eqn. (1.20))

� 2dx �Ddx, (1.26)

where in the last step we have used the antisymmetry of W as follows:

dx �Wdx � W Tdx � dx � �dx �Wdx,

which implies that dx �Wdx � 0.
The vorticity vector is defined by

ω �∇� u. (1.27)

We now show that ω{2 is the axial vector of W . It then follows from Eqns. (1.2) that

ωi � �εijkWjk, (1.28)

Wij � �1
2

εijkωk.

Using ω �∇� u, we have

p∇� uq � v � εijkεjmn
Bun

Bxm
vkei

� pδkmδin � δknδimq
Bun

Bxm
vkei

�
� Bui
Bxk

vk �
Buk
Bxi

vk

�
ei

� r∇u� p∇uqTsv
� 2Wv @v P V,
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8 Fluid Mechanics

which is the desired result. Physically speaking, the vorticity vector represents the local
rotation of an element. The volume elements in the deformed and undeformed configura-
tions are related as

dV � JdV0. (1.29)

1.2.4 Vortex lines and circulation

A vortex line is a line to which the vorticity vector is tangent everywhere. By following a
procedure similar to the derivation of the equation for a streamline, we find the equation
for a vortex line to be

dx1

ω1
� dx2

ω2
� dx3

ω3
.

A vortex tube is a tube with a wall composed of vortex lines. The circulation contained
within a closed contour C is defined by

Γ :�
¾
C

u � dx �
¾
C

u � λ ds, (1.30)

where dx represents an element of the contour, and λ � dx{ds represents the unit tangent
to the contour. Applying Stokes’ theorem (Eqn. (1.9)) to Eqn. (1.30) we get

Γ �
¾
C

u � dx �
»

S
ω � n dS. (1.31)

Thus, the circulation represents the flux of vorticity through S. Note that if ω � 0, then
Γ � 0. Flows for which ω � 0 are called irrotational. One can prove that ω � ∇� u � 0 if
and only if there exists a scalar potential φ such that u �∇φ. Since ∇ �ω �∇ � p∇� uq �
0, for a closed surface Sc we have»

Sc

ω � n dS �
»

V
∇ �ω dV � 0. (1.32)

Consequently, we conclude that for a closed surface, vortex lines cannot terminate in the
interior of the surface, i.e., the net flux of the vorticity through Sc is zero. This fact is
used to prove that the circulations along two closed contours which enclose different cross
sections on a vortex tube are identical, as follows. Consider the section of a vortex tube
shown in Fig. 1.2. The surfaces S, A1 and A2 constitute the total surface Sc of the section.
C1 and C2 represent the contours of A1 and A2, respectively. The circulation associated
with C1 is given by Γ1 �

¶
C1

u � dx, and that associated with C2 is Γ2 �
¶

C2
u � dx. Since ω is

perpendicular to the normal n on the surface of a vortex tube, ω � n � 0 on S. Hence, from
Eqn. (1.32), we have»

A1

ω � n dS�
»

A2

ω � n dS � 0.

Cambridge University Press
978-1-107-09129-0 - Fluid Mechanics: Foundations and Applications of Mechanics: Volume II,: Third Edition
C. S. Jog
Excerpt
More information

www.cambridge.org© in this web service Cambridge University Press

http://www.cambridge.org/9781107091290
http://www.cambridge.org
http://www.cambridge.org


Kinematics and Governing Equations 9

n

n A1

A2

C1

C2
S

Fig. 1.2 Section of a vortex tube.

Using Eqn. (1.9), and assuming a counter-clockwise circulation as positive, this can be writ-
ten as¾

C1

u � dx�
¾
C2

u � dx � 0,

which proves that Γ1 � Γ2.
We now present a summary of the transport theorems and the governing equations

based on the principles of conservation of mass, balance of linear and angular momentum,
and the laws of thermodynamics; see Vol. I for the derivations.

1.3 Governing Equations

The following transport theorems are used in deriving the governing equations:

Theorem 1.3.1 (Transport theorem-I). Let f px, tq be a continuous and differentiable
scalar valued function, and let Vptq be the material volume (i.e., a volume comprising
of a fixed set of particles, and moving with the medium). Then, due to integration over
the spatial coordinates,

³
Vptq f px, tq dV is a function of time alone; its time derivative is

given by

d
dt

»
Vptq

f px, tq dV �
»

Vptq
B f
Bt

dV �
»

Sptq
f pu � nq dS. (1.33)

If wpx, tq is a vector-valued function, then we apply Eqn. (1.33) to each component of w
to get

d
dt

»
Vptq

wpx, tq dV �
»

Vptq
Bw
Bt

dV �
»

Sptq
wpu � nq dS. (1.34)

A control volume V is usually (but not always) a fixed region of space where we observe
various flow quantities. Since, in many instances, it is possible to compute forces or the
power generated simply by having the appropriate information at the control surface, the
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10 Fluid Mechanics

control volume form of the governing equation is very useful. The weakness of this ap-
proach, however, is that we do not obtain the details of the various fields within the control
volume.

Unlike the material volume Vptqwhich comprises the same set of particles as it evolves,
the control volume V will, in general, have different sets of particles at different times, and
even the mass of material enclosed by the control volume may change as, say, in the case
of a control volume enclosing a rocket. If S denotes the control surface, and urel denotes
the relative velocity of the fluid with respect to S, then we have the important relation

d
dt

»
Vptq

f px, tq dV � d
dt

»
V

f px, tq dV �
»

S
f purel � nq dS. (1.35)

For a vector-valued function wpx, tq, the corresponding relation is

d
dt

»
Vptq

wpx, tq dV � d
dt

»
V

wpx, tq dV �
»

S
wpurel � nq dS. (1.36)

Let ucs denote the velocity of the control surface. If»
St

f pucs � nq dS � 0;
»

St

wpucs � nq dS � 0, (1.37)

then the time derivative in the first terms on the right-hand side of Eqns. (1.35) and (1.36)
can be taken inside the integral sign, i.e.,

d
dt

»
V

f px, tq dV �
»

V

�B f
Bt



x

dV;
d
dt

»
V

wpx, tq dV �
»

V

�Bw
Bt



x

dV. (1.38)

Sufficient (but not necessary) conditions under which Eqn. (1.37) (and hence, Eqn. (1.38))
holds are

1. the control volume is stationary, i.e., ucs � 0, or

2. the control volume is undergoing rigid motion, and f (or w) is a function of time
alone,

For the subsequent development, we define the density field as

ρpx, tq � lim
∆VÑ0

∆m
∆V

,

where ∆V is a small volume with fluid of mass ∆m, surrounding the point with position
vector x. We now state the second transport theorem.

Theorem 1.3.2 (Transport theorem-II). Let f px, tq be as in transport theorem I. Then,³
Vptq ρ f px, tq dV due to integration over the spatial coordinates, is a function of time

alone, and its time derivative is given by

d
dt

»
Vptq

ρ f px, tq dV �
»

Vptq
ρ

D f
Dt

dV �
»

Vptq
ρ

"B f
Bt
� u � p∇ f q

*
dV. (1.39)
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