Optimization in Chemical Engineering

Optimization is used to determine the most appropriate value of variables under given conditions. The primary focus of using optimization techniques is to measure the maximum or minimum value of a function depending on the circumstances. Any engineering discipline involving design, maintenance and manufacturing requires certain technical decisions to be taken at different stages. The primary outcome of taking these decisions is to maximize the profit with minimum utilization of resources.

This book presents a detailed explanation of problem formulation and problem solving with the help of algorithms such as secant method, Quasi-Newton method, linear programming and dynamic programming. It covers important chemical processes such as fluid flow systems, heat exchangers, chemical reactor and distillation systems with the help of solved examples.

It begins by explaining the fundamental concepts followed by an elucidation of various modern techniques including trust-region methods, Levenberg-Marquardt algorithms, stochastic optimization, simulated annealing and statistical optimization. It studies multi-objective optimization technique and its applications in chemical engineering. The knowledge of such a technique is necessary as most chemical processes are multiple input and multiple output systems.

The book also discusses theory and applications of various optimization software tools including LINGO, MATLAB, MINITAB and GAMS. It is designed as a coursebook for undergraduate and postgraduate students of chemical engineering and allied branches including biotechnology, food technology, petroleum engineering and environmental science.

Suman Dutta is Assistant Professor at the Department of Chemical Engineering, Indian School of Mines, Dhanbad. He was a visiting researcher at the Centre for Water Science in Cranfield University, UK. He teaches courses on chemical engineering thermodynamics, chemical reaction engineering, fluid mechanics, process modeling and optimization and process instrumentation and control. His areas of research include wastewater treatment, membrane technology, advanced oxidation process, photocatalysis, process simulation and optimization.
Optimization in Chemical Engineering

Suman Dutta
To my father
Late Sukumar Dutta
and
God almighty
Contents

List of Figures xi
List of Tables xvii
Preface xix

1. **A Brief Discussion on Optimization**
 1.1 Introduction to Process Optimization 1
 1.2 Statement of an Optimization Problem 2
 1.3 Classification of Optimization Problems 3
 1.4 Salient Feature of Optimization 8
 1.5 Applications of Optimization in Chemical Engineering 9
 1.6 Computer Application for Optimization Problems 10

Summary 10
Review Questions 10
References 11

2. **Formulation of Optimization Problems in Chemical and Biochemical Engineering**
 2.1 Introduction 12
 2.2 Formulation of Optimization Problem 12
 2.3 Fluid Flow System 13
 2.3.1 Optimization of liquid storage tank 13
 2.3.2 Optimization of pump configurations 14
 2.4 Systems with Chemical Reaction 17
 2.4.1 Optimization of product concentration during chain reaction 18
 2.4.2 Optimization of gluconic acid production 20
 2.5 Optimization of Heat Transport System 21
 2.5.1 Calculation of optimum insulation thickness 21
 2.5.2 Optimization of simple heat exchanger network 24
 2.5.3 Maximum temperature for two rotating cylinders 26
 2.6 Calculation of Optimum Cost of an Alloy using LP Problem 28
Contents

2.7 Optimization of Biological Wastewater Treatment Plant 30
2.8 Calculation of Minimum Error in Least Squares Method 31
2.9 Determination of Chemical Equilibrium 33
Summary 35
Exercise 35
References 39

3. Single Variable Unconstrained Optimization Methods

3.1 Introduction 40
3.2 Optimization of Single Variable Function 41
3.2.1 Criteria for optimization 41
3.2.2 Classification of unconstrained minimization methods 47
3.3 Direct Search Methods 48
3.3.1 Finding a bracket for a minimum 48
3.3.2 Unrestricted search method 49
3.3.3 Exhaustive search 51
3.3.4 Dichotomous search 53
3.3.5 Interval halving method 56
3.3.6 Fibonacci method 59
3.3.7 Golden section method 62
3.4 Direct Root Methods 64
3.4.1 Newton method 65
3.4.2 Quasi-Newton method 66
3.4.3 Secant method 67
3.5 Polynomial Approximation Methods 68
3.5.1 Quadratic interpolation 69
3.5.2 Cubic interpolation 70
Summary 72
Exercise 72
References 73

4. Trust-Region Methods

4.1 Introduction 74
4.2 Basic Trust-Region Method 75
4.2.1 Problem statement 75
4.2.2 Trust-Region radius 76
4.2.3 Trust-Region subproblem 78
4.2.4 Trust-Region fidelity 78
4. Trust-Region Methods for Unconstrained Optimization

- **4.3** Trust-Region Methods for Unconstrained Optimization 79
- **4.4** Trust-Region Methods for Constrained Optimization 80
- **4.5** Combining with Other Techniques 82
- **4.6** Termination Criteria 83
- **4.7** Comparison of Trust-Region and Line-Search 83

Summary

- **Exercise** 84
- **References** 84

5. Optimization of Unconstrained Multivariable Functions

- **5.1** Introduction 86
- **5.2** Formulation of Unconstrained Optimization 87
- **5.3** Direct Search Method 87
 - **5.3.1** Random search methods 87
 - **5.3.2** Grid search method 90
 - **5.3.3** Univariate method 93
 - **5.3.4** Pattern search methods 94
- **5.4** Gradient Search Method 99
 - **5.4.1** Steepest descent (Cauchy) method 100
 - **5.4.2** Conjugate gradient (Fletcher–Reeves) method 102
 - **5.4.3** Newton’s method 104
 - **5.4.4** Marquardt method 106
 - **5.4.5** Quasi-Newton method 109
 - **5.4.6** Broydon–Fletcher–Goldfrab–Shanno method 113
- **5.5** Levenberg–Marquardt Algorithm 114

Summary

- **Review Questions** 116
- **References** 116

6. Multivariable Optimization with Constraints

- **6.1** Formulation of Constrained Optimization 119
- **6.2** Linear Programming 122
 - **6.2.1** Formulation of linear programming problems 122
 - **6.2.2** Simplex method 127
 - **6.2.3** Nonsimplex methods 133
 - **6.2.4** Integer linear programming 139
- **6.3** Nonlinear Programming with Constraints 144
 - **6.3.1** Problems with equality constraints 144
x Contents

6.3.2 Problems with inequality constraints 149
6.3.3 Convex optimization problems 151

Summary 154
Review Questions 154
References 156

7. Optimization of Staged and Discrete Processes

7.1 Dynamic Programming 157
 7.1.1 Components of dynamic programming 158
 7.1.2 Theory of dynamic programming 159
 7.1.3 Description of a multistage decision process 160

7.2 Integer and Mixed Integer Programming 166
 7.2.1 Formulation of MINLP 167
 7.2.2 Generalized Benders Decomposition 169

Summary 176
Exercise 176
References 178

8. Some Advanced Topics on Optimization

8.1 Stochastic Optimization 180
 8.1.1 Uncertainties in process industries 180
 8.1.2 Basic concept of probability theory 182
 8.1.3 Stochastic linear programming 186
 8.1.4 Stochastic nonlinear programming 191

8.2 Multi-Objective Optimization 193
 8.2.1 Basic theory of multi-objective optimization 197
 8.2.2 Multi-objective optimization applications in chemical engineering 202

8.3 Optimization in Control Engineering 206
 8.3.1 Real time optimization 206
 8.3.2 Optimal control of a batch reactor 208
 8.3.3 Optimal regulatory control system 212
 8.3.4 Dynamic matrix control 214

Summary 218
Review Questions 218
References 219

9. Nontraditional Optimization

9.1 Genetic Algorithm 222
 9.1.1 Working principle of GAs 223
9.2 Particle Swarm Optimization

9.2.1 Working principle
229
9.2.2 Algorithm
230
9.2.3 Initialization
231
9.2.4 Variants of PSO
232
9.2.5 Stopping criteria
235
9.2.6 Swarm communication topology
236

9.3 Differential Evolution

9.3.1 DE algorithm
241
9.3.2 Initialization
242
9.3.3 Mutation
243
9.3.4 Crossover
244
9.3.5 Selection
245

9.4 Simulated Annealing

9.4.1 Procedure
246
9.4.2 Applications of SA in chemical engineering
253

Summary
253

Exercise
254

References
255

10. Optimization of Various Chemical and Biochemical Processes

10.1 Heat Exchanger Network Optimization

10.1.1 Superstructure
258
10.1.2 Problem statement
260
10.1.3 Model formulation
260

10.2 Distillation System Optimization
263

10.3 Reactor Network Optimization
267

10.4 Parameter Estimation in Chemical Engineering

10.4.1 Derivation of objective function
271
10.4.2 Parameter estimation of dynamic system
273

10.5 Environmental Application
276

Summary
281

Review Questions
281

References
282
11. **Statistical Optimization**

11.1 Design of Experiment

11.1.1 Stages of DOE

11.1.2 Principle of DOE

11.1.3 ANOVA study

11.1.4 Types of experimental design

11.2 Response Surface Methodology

11.2.1 Analysis of a second order response surface

11.2.2 Optimization of multiple response processes

Summary

Review Questions

References

12. **Software Tools for Optimization Processes**

12.1 LINGO

12.2 MATLAB

12.3 MINITAB®

12.4 GAMS

Summary

Review Questions

References

Multiple Choice Questions – 1

Multiple Choice Questions – 2

Multiple Choice Questions – 3

Index
List of Figures

1.1 Convex function 4
1.2 Concave function 5
1.3 Local and global optimum points 6
1.4 Classification of optimization problem 7
1.5 Conversion of $f(x)$ to $-f(x)$ 8
1.6 Plot of objective function vs. decision variable 8
2.1 Liquid storage tank 13
2.2 Configuration of an L level pump network 15
2.3 Concentration vs. time plot for a series reaction in PFR 18
2.4 Objectives used during optimization of gluconic acid production 21
2.5 Changes of heat flux with insulation thickness 22
2.6 Heat exchanger network with three heat exchangers 24
2.7 Rotating cylinder (with temperature and velocity profile) 26
2.8 Biological wastewater treatment plant 30
2.9 Least square method 31
3.1 Global and relative optimum points 41
3.2 Undefined derivative at x^* 43
3.3 Inflection or saddle point 44
3.4 Unimodal functions 47
3.5 Work done vs. intermediate pressure graph 51
3.6 Exhaustive search (see Example 3.3) 52
3.7 Interval halving method 57
3.8 Convergence process of Newton method 66
3.9 Convergence process of secant method 67
3.10 Quadratic interpolation 70
4.1 Trust region 77
5.1 Contour representation for random jumping method 88
5.2 Contour representation for grid search method 91
5.3 Contour representation for Cr(VI) removal 92
5.4 Contour for quadratic function 94
5.5 Pattern search method 94
5.6 Gradient search method 99
List of Figures

5.7 Direction of movement of any point 100
6.1 Graphical representation of feasible region 120
6.2 Constrained optimization problem 120
6.3 Unbounded feasible region 121
6.4 Graphical representation of problem 6.12a–6.12d 127
6.5 Ellipsoid method 135
6.6 Interior point method 136
6.7 Karmarkar’s region inversion 137
6.8 Integer linear programming 140
7.1 Single-stage decision process 161
7.2 Multi-stage decision process 161
7.3 The annual net profit vs. time plot 163
7.4 Representation of 5 stage dynamic programming 164
7.5 Generalized Benders Decomposition method 175
8.1 Fluidization column 181
8.2 Multi-objective optimization 195
8.3 Pareto optimal set 195
8.4 Utopia point 196
8.5(a) Convex objective space 199
8.5(b) Non-convex objective space 199
8.6 Flowchart for evolutionary algorithm 201
8.7 Utopia-tracking approach 202
8.8 PID controller as MOO problem 205
8.9 Plant decision hierarchy 207
9.1 Parent chromosomes 226
9.2 Single point crossover 226
9.3 Multipoint crossover 226
9.4 Mutation operation 227
9.5 Flowchart of genetic algorithm 228
9.6 Movement of particles in PSO 230
9.7(a) von Neumann topology 236
9.7(b) Star topology 236
9.7(c) Wheel topology 237
9.7(d) Circle topology 237
9.7(e) Pyramid topology 237
9.8 Flowchart for differential algorithm 242
9.9 Flowchart of simulated annealing 247
9.10 Probability of accepting vs temperature plot 253
10.1 HEN superstructure 259
10.2 Continuous distillation column 264
10.3 Reactor network superstructure 269
11.1 Full factorial design with three variables 292
11.2 Fractional factorial design with three variables 292
List of Figures

11.3 Central composite design 294
11.4 Box–Behnken design 295
11.5(a) Response surface formed from Eq. 11.22a 298
11.5(b) Contour representation of Fig. 11.5a 299
11.6(a) Response surface formed from Eq. 11.22b 299
11.6(b) Contour representation of Fig. 11.6a 300
11.7(a) Response surface formed from Eq. 11.22c 300
11.7(b) Contour representation of Fig. 11.7a 301
12.1 LINGO main window 308
12.2 Lingo Model-Lingo1 window with a maximization model 309
12.3 Toolbar of LINGO 309
12.4 LINGO error message box 309
12.5 Solver status window 310
12.6 LINGO solution report window 311
12.7 LINGO solver status window 315
12.8 Plot of objective 1 and objective 2 321
12.9 Pareto front for obj1 and obj2 322
12.10 MINITAB main window 324
12.11 MINITAB window for selecting DOE 325
12.12 MINITAB window with B–B design 326
12.13 MINITAB window with data for B–B design 327
12.14 MINITAB window for analyzing the response surface design 328
12.15 MINITAB window for selecting "response" 328
12.16 MINITAB window with results 329
12.17(a) Response surface of Eq. 12.2 at pH = 0 330
12.17(b) Response surface of Eq. 12.2 at TiO2 = 0 331
12.17(c) Response surface of Eq. 12.2 at Time = 0 331
12.18(a) Contour of the response Eq. 12.2 at pH = 0 332
12.18(b) Contour of the response Eq. 12.2 at TiO2 = 0 332
12.18(c) Contour of the response Eq. 12.2 at Time = 0 333
12.19 Main window of GAMS 334
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Composition and cost of copper alloys</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>Values of stationary points</td>
<td>46</td>
</tr>
<tr>
<td>3.2</td>
<td>Values of successive iterations with accelerated step size</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>The available interval of uncertainty after different trials</td>
<td>52</td>
</tr>
<tr>
<td>3.4</td>
<td>Work done with different intermediate pressure (Exhaustive search method)</td>
<td>53</td>
</tr>
<tr>
<td>3.5</td>
<td>Final intervals of uncertainty for different pairs of experiments</td>
<td>54</td>
</tr>
<tr>
<td>3.6</td>
<td>Final interval of uncertainty by golden section method</td>
<td>63</td>
</tr>
<tr>
<td>5.1</td>
<td>Value of objective function at different grid points</td>
<td>92</td>
</tr>
<tr>
<td>6.1</td>
<td>Subproblems for branch and bound method</td>
<td>143</td>
</tr>
<tr>
<td>6.2</td>
<td>Results of the subproblems in Table 6.1</td>
<td>143</td>
</tr>
<tr>
<td>7.1</td>
<td>Values of the decision variables (as per Eq. 7.14)</td>
<td>164</td>
</tr>
<tr>
<td>7.2</td>
<td>Values of the decision variables (as per Eq. 7.15)</td>
<td>165</td>
</tr>
<tr>
<td>7.3</td>
<td>Values of the decision variables (as per Eq. 7.16)</td>
<td>165</td>
</tr>
<tr>
<td>7.4</td>
<td>Values of the decision variables (as per Eq. 7.17)</td>
<td>165</td>
</tr>
<tr>
<td>7.5</td>
<td>Values of the decision variables (as per Eq. 7.18)</td>
<td>166</td>
</tr>
<tr>
<td>8.1</td>
<td>Number of worker present with probability</td>
<td>185</td>
</tr>
<tr>
<td>9.1</td>
<td>Decimal to binary conversion</td>
<td>224</td>
</tr>
<tr>
<td>9.2</td>
<td>Single and multiple point crossover</td>
<td>227</td>
</tr>
<tr>
<td>9.3</td>
<td>Chromosomes after crossover</td>
<td>227</td>
</tr>
<tr>
<td>9.4</td>
<td>Calculated values of different iteration</td>
<td>252</td>
</tr>
<tr>
<td>11.1</td>
<td>Single factor experiment with 5 level of the factor and 5 replicates</td>
<td>287</td>
</tr>
<tr>
<td>11.2</td>
<td>Arrangement of experimental run after randomization</td>
<td>288</td>
</tr>
<tr>
<td>11.3</td>
<td>Reaction rate data at different pH</td>
<td>288</td>
</tr>
<tr>
<td>11.4</td>
<td>Three variable B–B design</td>
<td>295</td>
</tr>
<tr>
<td>11.5</td>
<td>Values of the coefficient (Anupam et al.)</td>
<td>302</td>
</tr>
<tr>
<td>12.1</td>
<td>Widget capacity data</td>
<td>313</td>
</tr>
<tr>
<td>12.2</td>
<td>Vendor widget demand</td>
<td>313</td>
</tr>
<tr>
<td>12.3</td>
<td>Shipping cost per widget ($)</td>
<td>313</td>
</tr>
<tr>
<td>12.4</td>
<td>Description of MATLAB function used for optimization</td>
<td>317</td>
</tr>
<tr>
<td>12.5</td>
<td>Levels of independent variables for B–B design</td>
<td>325</td>
</tr>
<tr>
<td>12.6</td>
<td>Matrix of B–B design</td>
<td>326</td>
</tr>
<tr>
<td>12.7</td>
<td>ANOVA for percentage dye removal</td>
<td>329</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.8</td>
<td>Different variable type and their GAMS keyword</td>
<td>335</td>
</tr>
<tr>
<td>12.9</td>
<td>Different relational operator in GAMS</td>
<td>335</td>
</tr>
<tr>
<td>12.10</td>
<td>Available solution procedure in GAMS</td>
<td>335</td>
</tr>
<tr>
<td>12.11</td>
<td>Availability and cost of petroleum stocks</td>
<td>338</td>
</tr>
<tr>
<td>12.12</td>
<td>Specification and selling price</td>
<td>339</td>
</tr>
</tbody>
</table>
Preface

Optimization in the field of chemical engineering is required to utilize the resources in an efficient way as well as to reduce the environmental impact of a process. Application of optimization processes helps us achieve the most favorable operating conditions. Maximum profit is achievable if a process plant runs at optimum conditions. Knowledge of optimization theory as well its practical application is essential for all engineers.

The idea of this book came to my mind long back, perhaps six years ago. Then I started working on it; selecting topics to be included, collecting research papers, and preparing the manuscript. Many people helped me during this process, especially while collecting research articles from different sources: Sudip Banerjee, Arindam Chatterjee, D.K. Sandilya to name a few. I received very useful suggestions from reviewers of this manuscript.

This book contains detailed theory and applications of optimization in chemical engineering and related fields. Prerequisites for this book include some understanding of chemical engineering, biotechnology and mathematics. This book has been divided into twelve chapters. It contains various classical methods for optimization; it also introduces some of the recently developed topics in optimization. Examples from the field of chemical engineering and biochemical engineering are discussed throughout the book.

Chapter 1 discusses the classification and fundamentals of optimization methods. It also includes the salient features of optimization. This chapter also lists different types of objective functions and conditions for optimization. Chapter 2 gives emphasis to different chemical engineering processes and problem formulation procedures for optimization application. This chapter includes objective function formulation of fluid flow system, heat transfer equipments, mass transfer equipments, and reactors. One dimensional unconstrained problem formulation and optimization have been discussed in Chapter 3. This chapter includes different methods like Newton’s method, Quasi-Newton method, Secant method etc. Chapter 4 discusses the Trust-Region methods for both constrained and unconstrained optimization problems. An overview of optimization of multivariable unconstrained functions is given in Chapter 5. This chapter comprises various search methods (i.e. random search, grid search), gradient method, Newton’s method etc. Chapter 6 discusses the optimization methods for multivariable functions with constraints. This chapter contains both linear programming and non-linear programming. Optimization of staged and discrete processes has been discussed in Chapter 7. This includes dynamic programming, integer and mixed integer programming. Chapter 8 contains some advanced topics on optimization. This chapter discusses stochastic optimization, multiobjective optimization and optimization problems related to control systems. Most chemical process involve highly nonlinear equations that are difficult to optimize using simple and traditional optimization techniques. Chapter 9 discusses some nontraditional optimization methods like Genetic Algorithm (GA), Particle Swarm optimization, Simulated annealing etc. Chapter 10 elucidates the practical application of optimization theory in various chemical and biochemical processes. Chapter 11 describes different statistical optimization methods. This chapter contains response surface methodology with examples from chemical engineering and biotechnology. Chapter 12 gives an overview of different optimization software tools. This chapter elucidates software for optimization such as LINGO, MATLAB, MINITAB and GAMS. A large number of multiple-choice questions are included at the end of this book. I hope this book will be helpful...
for students at undergraduate and graduate levels. Students will benefit if they go through the theories and solved examples side by side.

I am grateful to LINDO Systems Inc., MathWorks Inc., Minitab Inc., and GAMS for giving permission to include material and screenshots in this book. I am thankful to Gauravjeet Singh Reen for his support during the preparation of the manuscript. I must convey my gratitude to all members of Cambridge University Press for their kind cooperation. I am indebted to my family members for their kind cooperation. I am also thankful to all my colleagues, friends, and well-wishers.

Readers of this book are requested to send their comments and suggestions for further improvement.