Contents

CLASS Software xi
Disclaimer xi
Preface xiii
Acknowledgments xv

Part I The Land-Atmospheric Boundary Layer System

1 Seeking Interdisciplinary Connections 3
 1.1 Which Fields Are We Crossing? 5
 1.1.1 Atmospheric Dynamics 5
 1.1.2 Atmospheric Chemistry and Air Pollution 7
 1.1.3 Land Processes 7
 1.1.4 Biogeochemical Cycles in the Land Processes 9
 1.2 Which Variables Do We Study? 9
 1.3 Selecting and Combining Themes 12
 1.3.1 Clear to Cloudy Atmospheres 13
 1.3.2 Evaporation: From Bare Soil to Fully Vegetated Surfaces 13
 1.3.3 From Pristine to Polluted Atmospheres 14
 1.3.4 Designing and Conducting Your Own Research 15
 1.4 Standing on the Shoulders 16

Part II The Uncoupled System

2 Atmospheric Boundary Layer Dynamics 21
 2.1 Physical Description 21
 2.2 Physical Representation: Mixed-Layer Theory 24
 2.3 Supportive Reading 32

3 Atmospheric Boundary Layer Chemistry 33
 3.1 Chemical Description 33
 3.2 Chemistry Representation: Mixed-Layer Theory 35
Contents

3.3 Atmospheric Turbulent Transport versus Chemical Transformation 39
3.4 Supportive Reading 41

4 Potential Temperature Budget: Diurnal Variation of Temperature 42
 4.1 Governing Equations for Potential Temperature 43
 4.2 Hands-On: What Controls the Daily Maximum Temperature? 45
 4.3 Supportive Reading 52

5 Moisture Budget: Diurnal Variation of Specific Moisture 53
 5.1 Governing Equations for Moisture 53
 5.2 Determination of the Lifting Condensation Level 55
 5.3 Hands-On: When and Where Are Clouds Formed? 57
 5.4 Supportive Literature 61

6 Momentum Budget: Diurnal Variation of Wind 62
 6.1 Fundamental Concepts 63
 6.1.1 Wind Shear 63
 6.1.2 Turbulent Kinetic Energy 64
 6.1.3 Atmospheric Surface Layer 66
 6.1.4 Quantifying Stability Effects 67
 6.1.5 Parameterization of the Surface Fluxes 68
 6.2 Governing Equations for Momentum 69
 6.2.1 Mixed-Layer Equations for Momentum 69
 6.2.2 The Influence of Shear on ABL Growth 73
 6.3 Wind Inertial Oscillation 73
 6.3.1 Physical Interpretation of the Forces: Equilibrium States 73
 6.3.2 ABL Wind as a Harmonic Oscillator 75
 6.4 Hands-On: Understanding the Wind Budget Equations 78
 6.5 Supportive Literature 84

7 Scalar and CO₂ Budget: Contributions of Surface, Entrainment, and Advection 85
 7.1 Governing Equations for the Scalar 85
 7.2 Contributions to the Scalar Budget: Surface, Entrainment, and Advection 86
 7.3 Hands-On: Bottom-Up and Top-Down Scalar 87
 7.4 Hands-On: What Controls the Diurnal Minimum of Carbon Dioxide? 90
 7.5 Supportive Literature 91

8 Reactant Budget: Diurnal Variation of Ozone 92
 8.1 Governing Equation for Ozone 93
 8.2 The Photostationary State 97
Contents

- 8.3.1 Boundary Layer Dynamic Effects 100
- 8.3.2 Chemistry Effects 104
- 8.3.3 Land Effects on Dynamics and Chemistry 106

8.4 Supportive Literature 110

Part III The Coupled System

9 Atmosphere-Vegetation-Soil Interaction 113
- 9.1 Radiation and Energy Balance 113
- 9.2 Land Surface Representation 115
 - 9.2.1 Radiation Components 115
 - 9.2.2 Surface Turbulent Fluxes 117
 - 9.2.3 Turbulence and Soil/Vegetation Effects 121
 - 9.2.4 Soil Representation: Force-Restore Soil Model 124
- 9.3 Supportive Literature 125

10 Numerical Experiments: Atmosphere-Vegetation-Soil Interaction 126
- 10.1 Hands-On: What Controls Surface Evaporation? 126
- 10.2 Surface Conditions Influencing the Atmosphere 128
- 10.3 Atmosphere Conditions Influence the Surface 132
- 10.4 When and Where Do Clouds Form? The Role of Free Tropospheric Conditions 133
- 10.5 Bare Soil versus Vegetated Surfaces 135
- 10.6 Sensitivity to the Soil Types 135
- 10.7 Water on Leaves: Influence of Water Interception 137
- 10.8 Supportive Literature 137

11 A Dynamic Representation of Carbon Dioxide Exchange from the Vegetation and Soil 138
- 11.1 Carbon Dioxide Exchange by Vegetation 141
- 11.2 CO₂ Respiration by Soil 145
- 11.3 Relating the Fluxes of Carbon Dioxide and Water Vapour 146
- 11.4 Atmosphere-Vegetation-Soil System: Budget Analysis 146
- 11.5 Supportive Literature 147

12 Sensitivity of the Atmosphere-Vegetation-Soil System to Climate Perturbations 148
- 12.1 Hands-On: How Do Climate Modifications Influence CO₂ Exchange? 149
 - 12.1.1 Effect of a Warmer Climate 149
 - 12.1.2 Effect of Drought Events 151
 - 12.1.3 Effect of High CO₂ Concentration Levels 153
Contents

12.1.4 Effect of Global Dimming 154
12.1.5 C3 versus C4 Plants 154
12.2 Supportive Literature 155

13 Case Studies of More Complex Situations 156
 13.1 Sea-Breeze Interaction with Surface Fluxes and Boundary Layer Dynamics 157
 13.1.1 Heat and Moisture Advection Constant in Time 158
 13.1.2 Heat and Moisture Advection Varying in Time 160
 13.1.3 Development of a Thermal Internal Boundary Layer 161
 13.2 Multi-day Drought Event 162
 13.2.1 Soil Moisture in Equilibrium 163
 13.2.2 Soil Moisture Decrease Day by Day 166
 13.2.3 Linking the Land Water Balance to the Surface Energy Balance 170
 13.2.4 Responses of Forest and Grassland to Drought 172
 13.3 Multi-Day Air Pollution Event 173
 13.4 Supportive Literature 175

Part IV Processes Related to Boundary Layer Clouds

14 Cloud-Topped Boundary Layer: Stratocumulus 179
 14.1 The Influence of Longwave Radiative Cooling: Dry Stratocumulus 179
 14.2 The Longwave Radiation Term in the Mixed-Layer Equations 183
 14.3 Sea Surface Fluxes 186
 14.5 Supportive Literature 189

15 The Partially Cloud-Topped Boundary Layer: Shallow Cumulus 190
 15.1 The Influence of Condensation on the ABL Dynamics 190
 15.1.1 Vertical Structure of the Cloudy CBL 191
 15.1.2 Conditional Instability in the Cloud Layer 193
 15.2 Hands-On: Uplifting Process in a Moist Parcel 196
 15.3 Introducing the Effect of Clouds in the Mixed-Layer Equations 199
 15.3.1 Mass Flux and Cloud Core Fraction 199
 15.3.2 The Mixed-Layer Equation in the Sub-Cloud Layer 202
 15.4 Cloud Base, Sub-Cloud Layer Top Height, and Cloud Top 203
 15.5 Hands-On: Thermodynamics in the Sub-Cloud Layer over Land 204
 15.6 Hands-On: Shallow Cumulus Interaction with Surface Properties 206
 15.7 Hands-On: Chemistry in the Presence of Shallow Cumulus 208
 15.8 Supportive Literature 210