Contents

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
</tr>
<tr>
<td>1 Introduction</td>
</tr>
<tr>
<td>Carolus J. Schrijver, Frances Bagenal, and Jan J. Sojka</td>
</tr>
<tr>
<td>1.1 Comparative heliophysics</td>
</tr>
<tr>
<td>1.2 Exoplanets</td>
</tr>
<tr>
<td>1.3 Cool stars and their space weather</td>
</tr>
<tr>
<td>1.4 Atmospheres, stellar winds, and cosmic rays</td>
</tr>
<tr>
<td>1.5 Astrophysical dynamos and space weather</td>
</tr>
<tr>
<td>1.6 Heliophysics of planetary atmospheres</td>
</tr>
<tr>
<td>1.7 Aeronomy and magnetospheres</td>
</tr>
<tr>
<td>1.8 Dimensionless heliophysics: from heliosphere to dust</td>
</tr>
<tr>
<td>1.9 Energetic particles as diagnostic tools for heliophysics</td>
</tr>
<tr>
<td>1.10 Radio signals as diagnostic tools for heliophysics</td>
</tr>
<tr>
<td>1.11 Chapter outlines</td>
</tr>
<tr>
<td>2 Solar explosive activity throughout the evolution of the solar system</td>
</tr>
<tr>
<td>Rachel Osten</td>
</tr>
<tr>
<td>2.1 Key parameters important to a discussion of explosive events</td>
</tr>
<tr>
<td>2.2 Time scales: explosive events on stars, young to old</td>
</tr>
<tr>
<td>2.3 Take-away points</td>
</tr>
<tr>
<td>3 Astrospheres, stellar winds, and the interstellar medium</td>
</tr>
<tr>
<td>Brian E. Wood and Jeffrey L. Linsky</td>
</tr>
<tr>
<td>3.1 The spatial extent of the solar wind</td>
</tr>
<tr>
<td>3.2 Observed properties of the local interstellar medium</td>
</tr>
<tr>
<td>3.3 Introduction to heliospheric structure</td>
</tr>
<tr>
<td>3.4 Observational constraints on the global heliosphere</td>
</tr>
<tr>
<td>3.5 Effects of a variable ISM on past heliospheric structure</td>
</tr>
</tbody>
</table>
Contents

3.6 Detecting astrospheres

Detecting astrospheres 71

3.7 Long-term evolution of stellar winds

Long-term evolution of stellar winds 72

4 Effects of stellar eruptions throughout astrospheres

Effects of stellar eruptions throughout astrospheres 80

Ofer Cohen

4.1 Astrospheres in time

Astrospheres in time 80

4.2 Coronal mass ejections in time

Coronal mass ejections in time 89

4.3 Coronal mass ejections and close-in exoplanets

Coronal mass ejections and close-in exoplanets 98

5 Characteristics of planetary systems

Characteristics of planetary systems 104

Debra Fischer and Ji Wang

5.1 Overview of Keplerian orbits

Overview of Keplerian orbits 105

5.2 Doppler surveys for exoplanets

Doppler surveys for exoplanets 106

5.3 Transit technique

Transit technique 110

5.4 Direct imaging

Direct imaging 115

5.5 Microlensing

Microlensing 116

5.6 Astrometry

Astrometry 117

5.7 Comparative planetology

Comparative planetology 117

6 Planetary dynamos: updates and new frontiers

Planetary dynamos: updates and new frontiers 126

Sabine Stanley

6.1 Dynamo fundamentals

Dynamo fundamentals 127

6.2 Planetary dynamos: updates

Planetary dynamos: updates 129

6.3 Planetary dynamos: new frontiers

Planetary dynamos: new frontiers 138

6.4 Outlook

Outlook 145

7 Climates of terrestrial planets

Climates of terrestrial planets 147

David Brain

7.1 Current climates of terrestrial planets

Current climates of terrestrial planets 147

7.2 Evidence for climate change

Evidence for climate change 150

7.3 How do climates change?

How do climates change? 152

7.4 Atmospheric source and loss processes

Atmospheric source and loss processes 156

7.5 Requirements and reservoirs for atmospheric escape to space

Requirements and reservoirs for atmospheric escape to space 158

7.6 Atmospheric escape processes and rates

Atmospheric escape processes and rates 161

7.7 External drivers of escape

External drivers of escape 164

7.8 Internal drivers of escape

Internal drivers of escape 169

7.9 Frontiers

Frontiers 172

8 Upper atmospheres of the giant planets

Upper atmospheres of the giant planets 175

Luke Moore, Tom Stallard, and Marina Galand

8.1 Thermospheres of the giant planets

Thermospheres of the giant planets 176
Table of Contents

8.2 Ionospheres of the giant planets 181
8.3 Ionosphere–thermosphere–magnetosphere and solar wind coupling 187
8.4 Auroral emissions 196

9 Aeronomy of terrestrial upper atmospheres 201
David E. Siskind and Stephen W. Bougher
9.1 Global mean upper-atmospheric structure 203
9.2 How do neutral dynamics affect planetary ionospheres? 211
9.3 Summary and outlook 224

10 Moons, asteroids, and comets interacting with their surroundings 226
Margaret G. Kivelson
10.1 Physics of large-scale processes in space plasmas 226
10.2 Characterizing the plasma that interacts with solar-system bodies 229
10.3 Effects of the electrical properties of an obstacle in the flow 234
10.4 The interaction region and the role of MHD waves 238
10.5 Moons with magnetic fields permanent or inductive 240
10.6 Moons without atmospheres 244
10.7 Moons with atmospheres or other sources of neutrals 245
10.8 Small bodies in the solar wind 246
10.9 Summary and expectations for other planetary systems 249

11 Dusty plasmas 251
Mihály Horányi
11.1 Motivation 251
11.2 Dust charging 255
11.3 Dust in planetary magnetospheres 257
11.4 Waves in dusty plasmas: possible role in comets 265
11.5 Summary and conclusions 267

12 Energetic-particle environments in the solar system 270
Norbert Krupp
12.1 Energetic particles from the Sun 275
12.2 Energetic particles in planetary magnetospheres 278
12.3 Summary 287

13 Heliophysics with radio scintillation and occultation 289
Mario M. Bisi
13.1 Observing radio waves 290
13.2 Astronomical radio sources and spacecraft beacons 292
Contents

13.3 Radio occultation 293
13.4 Radio scintillation 293
13.5 Radio occultation, with a focus on planetary occultations 294
13.6 Interplanetary scintillation in the context of heliophysics 296
13.7 Faraday rotation in heliophysics 322

Appendix I Authors and editors 327
List of illustrations 329
List of tables 334
References 335
Index 366

The plates are to be found between pages 116 and 117