Contents

About the Author page xv

Preface .. xvi

Acknowledgments xxi

1 The Goal of One Hundred Knots 1
 1.1 A Brief Outline of the Key Types of Advanced Marine Vehicles... 2
 1.1.1 Fundamental Types of Hydrofoils 2
 1.1.2 Fundamental Types of Air Cushion Craft 7
 Amphibious Air Cushion Craft Basic Form 8
 Non-Amphibious Air Cushion Craft Basic Form 10
 Aerodynamic Air Cushion Craft Basic Forms 14
 Category A: Wing-in-Ground Effect 15
 Category B: Ram Wing 18
 Category C: PAR Wing-in-Ground-Effect 20
 Category D: Channel Flow Wing-in-Ground-Effect 24
 1.2 Main Marine Vehicles considered by the US Navy for High Speed 25

2 History of High Speed Ship Development 27
 2.1 One Hundred Knots Under What Conditions? 29
 2.2 High Speed at Sea 31
 2.3 Brief History of Hydrofoils 34
 2.4 Brief History of Air Cushion Craft 37
 2.5 Modern Day Developments to Achieve One Hundred Knots 42
 2.6 Early Developments (1916–1930) 46
 2.6.1 Douglas Warner’s Captured Air Bubble (CAB)............ 46
 Boat (1929) 46
 2.7 Dr. William R. Bertelsen’s Hovercraft (1958+) 49
 2.8 Sir Christopher Cockerell’s Developments (1955–1999) 50
 2.9 Hovercraft Development Ltd Sidewall Hovercraft (1963+) 52
 2.10 Saunders-Roe Developments (1959–2000) 53
 2.11 US Navy Amphibious Air Cushion Craft Development (1965–today) 56
Contents

2.15 Postscript .. 62

3 The First Surface Effect Ship .. 64
3.1 Basic Theory of Channel Flow .. 65
3.2 The MARAD Surface Effect Ship “Columbia” 69
3.3 MARAD Test Craft “VRC-I” .. 71
 3.3.1 Bow Flap .. 76
 3.3.2 Center Channel Flap .. 77
 3.3.3 Rear Jet and Jet Flap .. 78
3.4 Stability & Control Jets and Induced Drag Reduction Mechanism 80

4 History of US Maritime Administration “Large Surface Effect Ship” Program .. 86
4.1 Nuclear Ship N. S. Savannah .. 87
4.2 MARAD Hydrofoil Ship Denison Program 89
4.3 MARAD Aerodynamic Surface Effect Ship (Columbia and VRC-I) Program .. 91
4.4 US Department of Commerce “Surface Effect Ships for Ocean Commerce (SESOC)” Study 92
 4.4.1 Hydroskimmer .. 94
 4.4.2 Captured Air Bubble (CAB) 95
 4.4.3 Hydrokeel .. 96
 4.4.4 VRC Channel Flow .. 98
 4.4.5 Weiland Craft .. 100
4.5 Booz-Allen and MARAD Designs for Surface Effect Ships 101
 4.5.1 Booz-Allen Adjustments to Candidate Designs 101
4.6 Conclusions and Recommendations of the SESOC Committee 103
 4.6.1 SESOC Conclusions and Recommendations on Channel Flow and CAB Concepts 103
 Aero-Hydro Dynamics and Control Panel Findings 104
 Speed, Resistance, and Seakeeping Panel Findings 105
 Propulsion Panel Findings 106
 Hull Panel Findings .. 106
 Operations Panel Findings 108
4.7 SESOC Committee Conclusions and Recommendations 108
4.8 Ongoing SES Experience While SESOC Committee Was Deliberating .. 109
 4.8.1 Amphibious Air Cushion Craft 109
 4.8.2 Non-Amphibious Air Cushion Craft 113
 British Sidewall Hovercraft 113
 Soviet “Sidewall” Craft 115
 4.8.3 Aerodynamic Air Cushion Craft 116
 Lippisch Wing-in-Ground-Effect Craft 117
 Soviet Ekranoplan Development 118
4.9 MARAD Plans Post SESOC .. 119
Contents

5 History of US Navy “Large High Speed Surface Effect Ship” Program 121
 5.1 MARAD and US Navy Schedules for 100 Knot SES 122
 5.2 Chronological History of 100 Knot SES Program 123
 5.3 Postscript 137
 5.3.1 SESPO’s Designs for Larger SES in 50 knot Class 142
 5.3.2 “US Navy Successfully Meets All Objectives of High Speed SES” 145
 5.4 Summary of the Two Decades of Development 146

6 SES-100A and SES 100B Test Craft and the “THREE THOUSAND TON SES” 149
 6.1 Evolution of Captured Air Bubble (CAB) and Sidehull SES 150
 6.2 Different Key Technologies of the SES-100A and SES-100B 151
 6.3 Sidewall, Sidehull and Sideboard 155
 6.3.1 Sidehull Shaping of SES-100A and SES-100B 158
 6.3.2 Some Additional Comments on Stability 163
 6.3.3 Lateral Stability Rules for Air Cushion Craft 167
 6.4 Seal System Differences 170
 6.4.1 SES-100A Rigid Planer Seal Design 170
 6.4.2 Pitch Stiffness of CAB Planer Seals on SES-100A 173
 6.4.3 Sidehull SES-100B Flexible Seal Design 175
 6.4.4 The Problem of Flagellation 180
 6.5 Structural Design Approach 187
 6.6 Engines and Their Arrangement 189
 6.7 Lift System and Ride Control 190
 6.8 Propulsion System Differences 194
 6.8.1 SES-100A Waterjet Propulsion System 195
 6.8.2 SES-100B Propulsion System 196
 6.9 Comment on the Key Technology Differences between the SES-100A and SES-100B 202
 6.10 Performance of the One Hundred Ton Test Craft 202
 6.10.1 Maximum Speeds of the SES-100A and SES-100B 203
 6.10.2 SES-100B Performance in Rough Water 204
 6.10.3 SES-100B Habitability Envelope 206
 6.10.4 SES-100B Lift Drag Ratio and Transport Efficiency 208
 6.10.5 Comment on Scaling 213
 6.10.6 SES-100B Range 215
 6.10.7 SES-100B Turning Performance 215
 6.10.8 SES-100B Acceleration Performance 217
 6.10.9 SES-100B Deceleration Performance 220
 6.10.10 SES-100B Successfully Meets All Program Objectives 221
 6.11 The Three Thousand Ton Surface Effect Ship 223
 6.11.1 Relationship of 3KSES to SES-100A and SES-100B 223
 6.12 Conclusion of the US Navy High Speed Large SES Program 225
7 Economic Considerations .. 228

7.1 Declining American Marine Industry 228
7.2 Direct Operating Costs .. 230
7.3 Bréguet Range Equation .. 231
 7.3.1 The Three Bréguet Efficiencies for Economic Transport 234
 Propulsion Efficiency ... 235
 Aerodynamic Efficiency and Transport Efficiency 236
 Effective Lift-Drag Ratio 237
 Structural Design Efficiency 238
7.4 What Price Speed? ... 242
7.5 Transport Efficiency of Vehicles since 1967 251
7.6 The Problem Facing the High Speed Ship Designer 253
7.7 Acquisition Cost of High Speed Marine Craft 255
7.8 Inflation Indices and Cost Trends Over Time 260
7.9 Weight and Cost Algorithms .. 262
 SWBS Group 100: Structure ... 264
 SWBS Group 200: Propulsion .. 265
 SWBS Group 500: Auxiliary Systems 267
 Cost Algorithms .. 268
 Cost of Follow-On Vehicles .. 269
 Detailed Cost Estimating Relationships 271
 Group 100 Structure Cost Estimating Relationship 271
 Group 200 Propulsion Cost Estimating Relationship 271
 Group 500 Auxiliary System Cost Estimating Relationship 272
 Frigate Sized SES Cost Example 273
7.10 Conclusions of Economic Considerations 275

8 Technical Considerations .. 277

8.1 Drag of High Speed Air Cushion Craft 279
 8.1.1 Cushion Induced Wave Drag (D_{wave}) 280
 8.1.2 Aerodynamic Drag (D_{aero}) 286
 8.1.3 Momentum Drag (D_{mom}) 287
 Air Flow in Calm Water ... 288
 Air Flow in Rough Water ... 289
 8.1.4 Skirt or Seal Drag (D_{SK}) 291
 Calm Water Skirt Drag (D_{SK}) 291
 Rough Water Skirt Drag .. 292
 8.1.5 Sidehull Drag (D_{SH}) ... 295
 From Sideboard to Sidehull 298
 Sidehull Design for Lower Speeds 301
 Sidehull Shaping for Performance and Stability 304
 Sidehull Lift and Drag .. 308
 Lift and Drag Characteristics of Planing Hulls and Seaplanes 309
 Flat Plate Planing Theory and Test 310
 Effect of Hull Deadrise on Lift Coefficient 319
 Application of Planing Hull Results to SES Hullforms 321
Contents

Sidehull Skin Friction Drag 321
Sidehull Wavemaking Drag 327
8.2 Total Drag Estimation 328
8.3 Design Speeds for SES 330
 Speed for Maximum Lift-Drag Ratio (L/D)\textsubscript{max} 331
 Maximum Lift Drag Ratio 335
8.4 Analysis of the Gabrielli-von Kármán Specific Resistance Curves 336
 Aerodynamic and Hydrodynamic “Barriers” 338
 Aerodynamic “Barrier” to Transport Efficiency 338
 Hydrodynamic “Barrier” to Transport Efficiency 340
8.5 Comparing Vehicles on Design Speed or Maximum Speed 348
8.6 Assessment of SES-100B Drag Theory and Test 349
 8.6.1 Sea States, Wave Heights and Wave Lengths 350
 8.6.2 Drag of SES-100B in Calm Seas 352
 8.6.3 Drag of SES-100B in High Sea States 352
 8.6.4 Drag of Sidehulls in Rough Seas 354
 8.6.5 SES-100B Skirt System Design for Rough Water Operation 356
8.7 Fan and Cushion System Dynamics 357
8.8 Dynamic Similitude and Scaling Laws 363
 Reynold’s Number ... 364
 Froude Number ... 364
 Cavitation Number .. 364
 Cushion Density ... 365
 Pressure Number ... 366
 Flexible Structure Scaling 367
8.9 Some Statistical Scaling Relationships 368
 Cushion Length and Cushion Pressure Design Trends 370
 Transport Efficiency Design Trends 372
8.10 Scaling from SES-100B to Frigate Size SES 375
 8.10.1 Magnitude of Lift Drag Ratio 378
 8.10.2 Speed for Maximum Lift-Drag Ratio 379
 8.10.3 Scaling of Transport Efficiency 380
8.11 Useful Load, Disposable Load and Empty Weight 382
8.12 Design Efficiencies and Performance Measures 383
8.13 Summary .. 386
9 Navy Military Operations Considerations 390
9.1 Speed and Amphibious Capability 392
9.2 Amphibious Warfare: Past, Present and Possible Future 397
9.3 Speed and Stealth .. 399
 9.3.1 Sea Shadow Stealth Ship 405
 9.3.2 The 100 knot Submarine 408
 9.3.3 Stealthy Surface Piercing Submarine 409
9.4 Summary .. 409
10 Advanced Naval Vehicles Concepts Evaluation (ANVCE) Project

10.1 Types of Vehicles Considered

10.1.1 The ANVCE Point Designs
10.1.2 Common Combat Suites

10.2 Point Designs

10.2.1 Surface Vehicle Point Designs
10.2.2 Air Vehicle Point Designs

10.3 Summary of Technological Issues to be Resolved

10.3.1 Selected Key Limiting Technologies in SES and Hovercraft

Structural Weight

“Rule of Thumb” on Impact Pressures

Structural Weights of ANVCE Point Design Surface Vehicles

Lift Systems Technology for Air Cushion Craft

Lift Fan Systems

Flexible Skirt System State of the Art

10.4 Ride Quality of High Speed Hydrofoils and Air Cushion Craft

10.4.1 Ride Quality Criteria

Motion Sickness Criteria

Work Efficiency Criteria

10.4.2 Ride Quality of SES-100B

10.4.3 Variable Geometry Hydrofoil

10.4.4 What Price Ride Quality?

10.5 Other Novel Forms Evaluated by ANVCE

10.5.1 Supercritical Planing Hull

10.5.2 Double Propeller Transom Configuration

10.6 Sidehull or No Sidehull?

10.7 ANVCE Project Evaluation of Aerodynamic Air Cushion Craft

10.7.1 The Vagaries of the Sea

10.7.2 German School of WIG Craft Design

10.7.3 Russian School of WIG Craft Design

10.7.4 US Navy Design Philosophy for WIG Design

WIG (H) Point Design

WIG (S) Point Design

WIG(O) Point Design

10.8 Empty Weight Trends for Landplanes, Seaplanes and WIGs

10.9 Techno-Economic Parameters

10.9.1 Speed for Maximum Range

10.9.2 Maximum Speed and Speed for Maximum Range

10.9.3 Transport Efficiency

10.10 Conclusions and Recommendations from ANVCE Final Report

Surface Effect Ships

Air Cushion Vehicles

Hydrofoils

Supercritical Planing Hulls

Wing-in-Ground-Effect Vehicles

10.11 Assessment of the ANVCE Project
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Aerodynamic Air Cushion Craft</td>
<td>501</td>
</tr>
<tr>
<td>11.1</td>
<td>Aerodynamic Underpinnings</td>
<td>501</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Lanchester-Prandtl Lifting Line Theory</td>
<td>504</td>
</tr>
<tr>
<td>11.1.2</td>
<td>Modifications to Lifting Line Theory for Finite Wings</td>
<td>505</td>
</tr>
<tr>
<td>11.1.3</td>
<td>Adaption of Lifting Line Theory to Wing-in-Ground-Effect (WIG)</td>
<td>508</td>
</tr>
<tr>
<td>11.2</td>
<td>Simple Theory for Lift and Drag of Wings in Ground Effect (IGE)</td>
<td>511</td>
</tr>
<tr>
<td>11.3</td>
<td>NASA Wind Tunnel Tests of Wing-in-Ground-Effect with No End Plates</td>
<td>512</td>
</tr>
<tr>
<td>11.4</td>
<td>Effect of Aspect Ratio on Lift Curve Slope</td>
<td>521</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Effect of Aspect Ratio on Lift Drag Ratio in Ground Effect</td>
<td>522</td>
</tr>
<tr>
<td>11.5</td>
<td>Lift and Drag in Ground Effect with End Plates</td>
<td>523</td>
</tr>
<tr>
<td>11.6</td>
<td>Wings in Ground Effect with Air Seals</td>
<td>528</td>
</tr>
<tr>
<td>11.7</td>
<td>Theory for Wings in Ground Effect with End Plates</td>
<td>533</td>
</tr>
<tr>
<td>11.8</td>
<td>Available Experimental Evidence of WIG with End Plates</td>
<td>540</td>
</tr>
<tr>
<td>11.9</td>
<td>Summary of Key Equations for Lift and Drag in Ground Effect</td>
<td>544</td>
</tr>
<tr>
<td>11.10</td>
<td>Choosing Cruise Height for a WIG Craft</td>
<td>546</td>
</tr>
<tr>
<td>11.11</td>
<td>Alternate Theories for Induced Drag in Ground Effect</td>
<td>551</td>
</tr>
<tr>
<td>11.12</td>
<td>Transport Efficiency of Ekranoplan</td>
<td>557</td>
</tr>
<tr>
<td>11.13</td>
<td>Alternate Forms of “End Plates”</td>
<td>560</td>
</tr>
<tr>
<td>11.14</td>
<td>Impact of Wing Loading and Cushion Density on Craft Size</td>
<td>562</td>
</tr>
<tr>
<td>11.15</td>
<td>Empty Weight of Aerodynamic Air Cushion Craft</td>
<td>564</td>
</tr>
<tr>
<td>11.16</td>
<td>Military Operations for ekranoplan</td>
<td>569</td>
</tr>
<tr>
<td>11.17</td>
<td>Aerodynamic Air Cushion or Aerostatic Air Cushion?</td>
<td>571</td>
</tr>
<tr>
<td>11.18</td>
<td>Mother Nature Knows Best</td>
<td>573</td>
</tr>
<tr>
<td>11.19</td>
<td>Variable Geometry</td>
<td>575</td>
</tr>
<tr>
<td>11.20</td>
<td>Wing in Ground Effect with Wing-Tip Jet Blowing</td>
<td>580</td>
</tr>
<tr>
<td>11.21</td>
<td>Bréguet Range for Jet Engine Powered Craft</td>
<td>582</td>
</tr>
<tr>
<td>11.22</td>
<td>Summary of Aerodynamic Air Cushion Craft</td>
<td>584</td>
</tr>
<tr>
<td>12</td>
<td>Lessons Learned and Where to Next?</td>
<td>587</td>
</tr>
<tr>
<td>12.1</td>
<td>The “Size-Speed-Mission” Triad</td>
<td>588</td>
</tr>
<tr>
<td>12.2</td>
<td>Lessons Learned</td>
<td>589</td>
</tr>
<tr>
<td>12.3</td>
<td>Domains of High Speed Marine Craft</td>
<td>592</td>
</tr>
<tr>
<td>12.4</td>
<td>Outgrowths of High Speed Marine Craft Development</td>
<td>595</td>
</tr>
<tr>
<td>12.4.1</td>
<td>High Speed Hydrofoils</td>
<td>595</td>
</tr>
<tr>
<td>12.4.2</td>
<td>High Speed and Stealth</td>
<td>595</td>
</tr>
<tr>
<td>12.4.3</td>
<td>Variable Geometry Craft</td>
<td>596</td>
</tr>
<tr>
<td>12.5</td>
<td>Recommended Avenues to Pursue</td>
<td>596</td>
</tr>
<tr>
<td>12.5.1</td>
<td>Large Ocean Going High Speed Ships (Next Step)</td>
<td>596</td>
</tr>
<tr>
<td>12.5.2</td>
<td>Aerodynamic Air Cushion Craft (Next Step)</td>
<td>597</td>
</tr>
<tr>
<td>12.6</td>
<td>Summary</td>
<td>598</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>599</td>
</tr>
</tbody>
</table>