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Introduction

Classical continuum physics deals with media without a visible microstructure.
That is, the scale of observation is large compared to the molecular scale, but
small relative to other heterogeneities within the system. More modern continuum
theories consider more directly the influence of microstructures; among them are
micromorphic, mixture, and nonlocal theories. On the smallest scale, individual
molecules are observed. Statistical mechanical theories and some micromorphic
field theories may be applicable on this scale. On a slightly larger scale, the
material body appears locally uniform with no distinct microstructure. This is
the scale of observation on which classical continuum theories apply. On yet a
larger scale of observation, large heterogeneities in space and/or time are evident.
Such heterogeneities are well characterized by the solution of continuum mechanics
problems at these scales.

From the atomic point of view, a macroscopic sample of matter is an agglom-
erate of an enormous number of nuclei and electrons. A complete mathematical
description of a sample consists of the specification of suitable coordinates for each
nucleus and electron; the number of such coordinates is enormous considering the
magnitude of Avogadro’s number of 6.0221×1023 mol−1 which gives us the number
of molecules in one mole of a substance.

In contrast to the atomistic description, only a few parameters are required
to describe the system macroscopically. The key to this reduction is the slowness
and large scale of macroscopic measurements in comparison to the speed of atomic
motions (typically of the order of 10−15 s) and atomic distance scales (typically
of the order of 10−10 m). For example, some of our fastest macroscopic measure-
ments are of the order of 10−6 s. Consequently, macroscopic measurements sense
only averages of the atomic coordinates. The mathematical process of averaging
eliminates coordinates and thus reduces the level of description in going from the
atomic to the macroscopic level.

Of the enormous number of atomic coordinates, a very few, with unique symme-
try properties, survive the statistical averaging. Certain of these are mechanical in
nature (e.g., volume, shape, and components of elastic strain), others are thermal
in nature (e.g., temperature and internal energy), or electrical/magnetical in na-
ture (e.g., electric and magnetic dipole moments). The subject of mechanics (e.g.,
elasticity and fluid mechanics) is the study of one set of surviving coordinates,
the subject of thermal sciences (e.g., thermodynamics and heat transfer) is the
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2 INTRODUCTION

study of another set of surviving coordinates, and the subject of electricity and
magnetism is the study of still another set of coordinates. In general, all these
sets of coordinates are coupled, and the study of continuum mechanics provides
the framework to study the coupling between these coordinates.

For many materials the behavior of large samples can be studied without re-
course to the details of the atomic level structure. We can describe fluids, solids,
glasses, bio-materials, mixtures, etc., by making use of the framework provided by
continuum mechanics.

1.1 Continuum mechanics

Continuum mechanics is the study of the macroscopic consequences of the large
number of atomic coordinates, which, by virtue of statistical averaging, do not
appear explicitly in the macroscopic description of a system. It is a branch of
physics that deals with materials. The fact that matter is made of atoms and that
it commonly has some sort of heterogeneous microstructure is mostly ignored in
the simplifying approximation that physical quantities, such as mass, momentum,
and energy, can be handled in the infinitesimal limit. For most materials, this is
possible as long as the characteristic length scale is far larger than 10−9 m and
the characteristic speed is much less than the speed of light (3 × 108 m/s). If the
length scale is of the order of 10−9 m or less, then quantum mechanics applies.
If the speed is near the speed of light, then relativistic mechanics applies. If the
length scale is of the order of 10−9 or less and the speed is near that of light, then
quantum field theory applies.

What are the consequences of the existence of the “hidden” atomic motion? Re-
call that in mechanics, thermal sciences, and electricity and magnetism we are
much concerned with the concept of energy. Energy transferred to a mechanical
mode of a system is called mechanical work δW . Similarly, energy can be trans-
ferred to an electrical mode of the system. Mechanical work is typified by the
term −pdV (p is pressure and V is volume), and electrical work is typified by the
term −E dP (E is the electric field and P is the electric dipole moment). It is
equally possible to transfer energy to the hidden atomic modes of motion as well
as to those which happen to be macroscopically observable. Energy transfer to
the hidden atomic modes is called heat. The energy residing in the hidden atomic
motions we call internal energy. Heat transfer and internal energy are typified by
terms such as δQ and dU .

Continuum mechanics is very general; it applies to complicated systems with me-
chanical, thermal, and electrical/magnetical properties. In this book, we will focus
on mechanical and thermal properties of materials, keeping in mind that this is not
a limitation of continuum mechanics theory. Differential equations are employed
in solving problems in continuum mechanics. Some of these differential equations
are specific to the materials being investigated, while others capture fundamental
physical laws, such as conservation of mass or conservation of momentum.

The physical laws of a material’s response to forces do not depend on the coor-
dinate system in which they are observed. Continuum mechanics is thus described
by tensors, which are mathematical objects that are independent of a coordinate
system. Such tensors can be expressed in coordinate systems for computational
convenience.
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1.2. CONTINUUM 3
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Figure 1.1: Limit at a point P .

1.2 Continuum

A continuum is a classical concept derived from mathematics:

a) the real number system is a continuum;

b) time can be represented by a real number system;

c) three-dimensional space can be represented by three real number systems;

d) time-space together is identified as a four-dimensional continuum.

A material continuum is characterized by quantities such as mass, momentum,
energy, and state variables.

Matter, as measured by its mass m, is assumed to have a continuous distribution
in space. A certain amount of mass occupies a definite volume V . As illustrated
in Fig. 1.1, we define the mass density at an arbitrary point P by

ρ(P ) = lim
n→∞
Vn→0

mn

Vn

, (1.1)

where mn is the mass contained in the averaging volume Vn.
Since the averaging volume must be sufficiently larger than molecular scales, to

conform to the real world, we take the definition of the density of the material at
P with an acceptable variability ε > 0 in a defining limit volume δ > 0:

lim
n→∞

Vn→δ≪1

∣
ρ(P )

mn/Vn

− 1∣ < ε ≪ 1. (1.2)

It is our responsibility to make sure that δ is sufficiently large and ε sufficiently
small for the concepts of a continuum to make sense. For example, δ should be
large enough in the four-dimensional time-space continuum to include a sufficiently
large number of molecules so that the number of molecules entering or leaving δ

is such as to lead to ε sufficiently small. Similarly, we define densities of momen-
tum and energy. For vector quantities, the definition applies to each component
individually. Note that in general the size of the limit volume δ for a fixed accept-
able variability ε is different for different physical quantities. Thus, again, it is
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4 INTRODUCTION

our responsibility to understand that the continuum description only makes sense
when describing average properties at scales larger than the largest δ among all
quantities that we are interested in describing within the acceptable variability ε.

Continuum mechanics ignores all the fine detail of atomic and molecular (or
particle) level structure and assumes that

- the highly discontinuous structure of real materials can be replaced by a
smoothed hypothetical continuum;

- every portion of the continuum, however small, exhibits the macroscopic
physical properties of the bulk material.

In any branch of continuum mechanics, the field variables (i.e., density, displace-
ment, and velocity) are conceptual constructs. They are taken to be defined at
all points of the imagined continuum and their values are calculated via axiomatic
rules of procedure.

The continuum model breaks down over distances comparable to interatomic
spacing (in solids about 10−10 m). Nonetheless, the average of a field variable
over a small but finite region is meaningful. Such an average can, in principle, be
compared directly to its nominal counterpart found by experiment, which will itself
represent an average of a kind taken over a region containing many atoms, because
of the finite physical size of any measuring probe. For solids, the continuum model
is valid in this sense down to a scale of order 10−8 m which is the side of a cube
containing a million or so atoms. Further, when field variables change slowly with
position at a microscopic level ∼10−6 m, their averages over such volumes (10−20

m3 say) differ insignificantly from their centroidal values. In this case, pointwise
values can be compared directly to observations. Such behaviors are illustrated in
Fig. 1.2 for the mass density at point P as a function of the size of the averaging
volume.

Within the continuum we take the behavior to be determined by balance laws
for mass, linear momentum, angular momentum, energy, and the second law of
thermodynamics. The continuum hypothesis enables us to apply these laws on a
local as well as a global scale.

1.3 Mechanics

Classical mechanics is the study of the motion and deformation changes in a body
composed of matter due to the action of forces. It is often referred to as Newtonian
mechanics after Newton and his laws of motion. Classical mechanics is subdivided
into statics (which models objects at rest), kinematics (which models objects in
motion), and dynamics (which models objects subjected to forces). In continuum
mechanics, we deal with all three aspects that are based on the concepts of time,
space, and forces. To understand the concept of forces, knowledge is needed from
all branches of engineering, physics, chemistry, and biology.

Classical mechanics produces very accurate results within the domain of every-
day experience. It is superseded by relativistic mechanics for systems moving at
large velocities (near the speed of light), quantum mechanics for systems at small
spatial scales (atomic or subatomic scales), and relativistic quantum field theory
for systems with both properties. Nevertheless, classical mechanics is still very
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Figure 1.2: Density limit with acceptable variability at a point P as a function of
averaging volume.

useful, because (i) it is much simpler and easier to apply than these other theories,
and (ii) it has a very large range of approximate validity. Classical mechanics can
be used to describe the motion of human-sized objects (i.e., tops and baseballs),
many astronomical objects (i.e., planets and galaxies), and certain microscopic
objects (i.e., sand grains and organic molecules.)

1.3.1 Deformation and strain

If we take a solid cube and subject it to some deformation, the most obvious
change in external characteristics will be a modification of the shape.

The specification of the deformation is thus a geometrical problem and may be
carried out from two different viewpoints: relate the deformation

1. with respect to the undeformed state (Lagrangian), or

2. with respect to the deformed state (Eulerian).

Locally, the mapping from the deformed to the undeformed state can be assumed
to be linear and described by a differential relation, which is a combination of pure
stretch (a rescaling of each coordinate) and a pure rotation.

The mechanical effects of the deformation are confined to the stretch and it is
convenient to characterize this by a strain measure. For example, for a wire under

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-08995-2 - Continuum Mechanics and Thermodynamics of Matter
S. Paolucci
Excerpt
More information

http://www.cambridge.org/9781107089952
http://www.cambridge.org
http://www.cambridge.org


6 INTRODUCTION

 

Material B in V

Closed surface S

P

n
Δfn

ΔSn ≪ 1

Figure 1.3: Traction with acceptable variability at a point P .

load the strain would be the relative extension, i.e.,

linear strain =
change in length

initial length
.

The generalization of this idea requires us to introduce a strain tensor at each
point of the continuum.

1.3.2 Stress field

Stress is a measure of force intensity or density. As illustrated in Fig. 1.3, the
traction or stress vector t at an arbitrary point P on a surface with normal vector
n with an acceptable variability ε > 0 is defined by

lim
n→∞

ΔSn→α≪1

∣
t(P,n)

Δfn/ΔSn

− 1∣ < ε ≪ 1, (1.3)

where α > 0 is sufficiently small, or more simply

t(P,n) =
df

dS
.

Within a deformed continuum there will be a force system acting. If we were
able to cut the continuum in the neighborhood of a point P as illustrated in
Fig. 1.4, we would find a force acting on the cut surface, which would depend on
the inclination of the surface and is not necessarily perpendicular to the surface.
This force system can be described by introducing a stress tensor σ at each point
whose components describe the loading characteristics.

1.4 Thermodynamics

Thermodynamics is the physics of energy, heat, work, entropy, and the spontaneity
of processes.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-08995-2 - Continuum Mechanics and Thermodynamics of Matter
S. Paolucci
Excerpt
More information

http://www.cambridge.org/9781107089952
http://www.cambridge.org
http://www.cambridge.org
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Figure 1.4: Stress vector at a point P .

While dealing with processes in which systems exchange matter or energy, clas-
sical thermodynamics is not concerned with the rate at which such processes take
place, termed kinetics. For this reason, the use of the term thermodynamics usu-
ally refers to equilibrium thermodynamics. In this connection, a central concept in
thermodynamics is that of quasistatic processes, which are idealized infinitely slow
processes. Because thermodynamics is not concerned with the concept of time,
it has been suggested that a better name for equilibrium thermodynamics would
have been thermostatics. Time-dependent thermodynamic processes are studied
by nonequilibrium thermodynamics. In continuum mechanics, we deal with both
equilibrium and non-equilibrium thermodynamics.

Thermodynamic laws are of very general validity, and they do not depend on
the details of the interactions or the systems being studied. This means they can
be applied to systems about which one knows nothing other than the balance of
energy and matter transfer between them and the environment.

The quantities that set thermostatics apart from classical particle mechanics are
temperature and entropy. The significance of entropy can be illustrated as follows.
Consider a flowing fluid. The fluid molecules possess kinetic energy which can be
broken into two components, a part which is ordered and contributes to the bulk
velocity, and another part which is random. The ordered energy is similar to the
macroscopic kinetic energy of particle mechanics, and is mechanical in form. It is
capable of being converted to work. Extraction of the ordered kinetic energy would
leave only the random (thermal) energy in the fluid. The random component of the
energy would contribute nothing to the work, as molecules would impact with such
forces so as to cancel each other. Theoretically, one could extract all the ordered
energy from the fluid leaving only the random energy. Now suppose that rather
than extracting the organized energy, we somehow bring the convective fluid to a
stop. The total energy of the fluid would remain unchanged, but there would no
longer be any ordered component. All the kinetic energy of the molecules is now
coming from random motions, and any attempt to convert this energy to work is
fruitless. Entropy is a measure of the randomness, or of the energy’s inability to
do work – except through transfer of randomness from one body to another.

The random thermal energy will not freely convert back to mechanical form.
That is, the likelihood that the molecules will realign to travel in some preferred
direction is extremely small. Thus, since entropy is a measure of the randomness,
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8 INTRODUCTION

it will not decrease without some external interactions. The only way one can
decrease molecular randomness is to transfer some of this randomness to another
body, and thereby increasing the randomness (entropy) of the other body. Thus,
transfer of thermal energy from one body to another effectively transfers entropy.
The transfer of thermal energy (randomness) as heat in this fashion is the only
known way by which it is possible to reduce a body’s entropy.

1.5 Constitutive theory

The specification of the stress and strain states of a body is insufficient to describe
its full behavior; we need in addition to link these two fields.

This is achieved by introducing a constitutive relation, which prescribes the
response of the continuum to arbitrary loading and thus defines the connection
between the stress and strain tensors for the particular material.

At best a mathematical expression provides an approximation to the actual
behavior of the material, but as we shall see we can simulate the behavior of a
wide class of media.

In general, we think of materials as existing in either a solid or fluid state. The
distinction between solid and fluid matter is relative; it depends on time scales
over which the material deforms. In turn, we can view a solid as either hard or
soft. Hard solids tend to respond elastically to an applied force, they have large
acoustic speeds, their energy character is enthalpic, they tend to be anisotropic,
they usually rupture upon yielding, and they retain perfect memory of only their
initial state. On the other hand, soft solids tend to be dissipative, have a low
acoustic speed, their energy behavior is entropic, they tend to be isotropic, they
fail through plastic deformation (fluid like), and they behave as viscous on a short
time scale and elastic on a long time scale. Fluids, in turn, can be classified as either
isotropic or anisotropic. Isotropic fluids can exhibit time scale effects. In general,
they respond elastically at short times and viscous at long times. Anisotropic
fluids, such as liquid crystals, behave solid-like and exhibit elastic behavior in
some directions.

1.5.1 Solids

To get an idea of the behavior of solids, we consider extension of a wire under
loading. The tensile stress σ and tensile strain e are then typically related. A
typical stress-strain curve is illustrated in Fig. 1.5.

a) Elasticity: If the wire returns to its original configuration when the load is
removed, the behavior is said to be elastic.

i) for linear elasticity σ = E e – called Hooke’s law and is usually valid
for small strains (E is the elastic modulus);

ii) for nonlinear elasticity σ = f(e) – it is important for rubber-like mate-
rials.

b) Plasticity: Once the yield point is exceeded, permanent deformation occurs
and there is no unique stress-strain curve, but a unique dσ-de relation. Due
to microscopic processes, the yield stress rises with σ (work hardening).
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Figure 1.5: A typical stress-strain curve.

c) Viscoelasticity (rate-dependent behavior): Materials may creep and show
slow long-term deformation, e.g., plastics and metals at elevated tempera-
tures. Simple models of viscoelasticity are

i) Maxwell model:

σ̇ +
E

μ
σ = E ė

which allows for instantaneous elasticity and represents a crude descrip-
tion of a fluid (μ is the viscosity of the material).

ii) Kelvin–Voigt model:

σ = E e + μ ė

which displays long-term elasticity.

More complex models can be written down, but all have the same charac-
teristic of depending on the time history of deformation.

1.5.2 Fluids

The simplest constitutive equation encountered in continuum mechanics is that of
an ideal fluid:

σ = −p(ρ,T ) 1,

where ρ is the density, T is the absolute temperature, the pressure field p is isotropic
and depends on density and temperature, and 1 is the unit tensor. If the fluid
is incompressible, ρ is a constant. The next level of complication is to allow the
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10 INTRODUCTION

stress to depend on the flow of the fluid. The simplest such form, a Newtonian
viscous fluid, includes a linear dependence on strain rate

σ = −p(ρ,T ) 1 + μ(ρ,T ) ė.

The quantity μ is called the shear viscosity.

1.6 Pioneers of continuum mechanics

The study of continuum mechanics originated from the works of James and John
Bernoulli, Euler, and Cauchy. The field remained stagnant for a very long period
of time after them. It was only after World War II that interest in the field was
renewed. The modern field of continuum mechanics is the result of pioneering
works from Truesdell, Noll, Toupin, Rivlin, Coleman, Ericksen, Müller, Eringen,
Gurtin, and Liu, among others. Clifford Truesdell is considered the father of
modern continuum mechanics.
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