Index

academic achievement
 influence of intelligence level, 19–21
achievement tests, 16–17
active reading for children
 effect on IQ, 154
adenine (A), 59
adoption studies, 41
 Denmark Adoption Studies of schizophrenia, 46–47
 Sweden Adoption Study, 47
twin studies of intelligence, 46–50
aging and IQ score, 30–32
Alkire, Michael, 183
alleles of genes, 60
Alzheimer's disease, 64, 156
amino acids, 59
analogy tests, 16
animal studies
 bridging animal and human research at the level of neurons, 175–179
aptitude tests, 16–17
Armed Forces Qualification Test (AFQT), 62
artificial intelligence (AI)
 based on human intelligence, 179–183
attention deficit hyperactivity disorder (ADHD), 156
autism, 2–3
autism research, 42
base pairs (nucleotides), 59, 60
BDNF (brain-derived neurotrophic factor), 62–63, 132
behavioral genetics, 41–42
Behaviorist view of human potential, 39
bell curve distribution of IQ scores, 13–15
Benbow, Camilla, 30, 77
bias in intelligence tests, 17–18
Big Data analysis, 60
Binet, Alfred, 12–13
Binet–Simon intelligence test, 12–13
bioinformatics, 60
Blank Slate view of human potential, 37, 39, 195
Bochumer Matrizen-Test (BOMAT), 144, 146–147, 148–149
boosting IQ, see increasing intelligence
Bouchard, Thomas, 50
brain activity
 evidence for individual differences, 76–79
 multiple areas involved in intelligence, 76–79
 See also fMRI; PET
brain-altering technologies, 158–162
brain anatomy
 Einstein's brain, 79, 95–96
 See also Brodmann Areas
brain efficiency and intelligence
brain activity in low-IQ groups, 75–76
 complexity of the concept, 110
effects of learning, 73–75
 functional neuroimaging studies, 110
MEG studies, 112–117
PET studies, 71–76
brain imaging, see neuroimaging
BRAIN Initiative (Brain Research through Advancing Innovative Neurotechnologies), 166, 181
brain lesion patients
 evidence for brain networks, 106–107
brain mapping, 180–181
brain networks
 and intelligence, 100–110
 connectivity analysis techniques, 100–110
default network, 100–101, 103
evidence from brain lesion patients, 106–107
homotopic connectivity, 103–104
rich club networks, 101
small-world networks, 101
brain proteins and IQ, 63
brain resilience after traumatic brain injury, 103
brain size and intelligence, 63
 size of brain regions and intelligence, 85
 whole brain size/volume, 84–85
Brin, Sergey, 28
Brodmann Areas (BAs), 85–86, 101
Buchsbaum, Monte, 71
Burt, Sir Cyril
twin studies, 46–50
Cajal, Santiago Ramon, xi
candidate gene studies, 58–59
CAT scan imaging of the brain, 69
Chabris, Christopher, 58–59, 141–142
CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology), 64
chemogenetic technique, 178
CHIC (Childhood Intelligence Consortium), 61, 63
China
 commitment to molecular genetic research, 64–65
 chromosomes, 59, 60
 chronometric testing, 168
classical music
 claims for increasing intelligence, 139–143
Clemons, Alonso, 3
Clinton, Bill, 166
cognitive-enhancing (CE) drugs
 ethical issues, 157–158
cognitive segregation, 22
compensatory education programs, 42–45
complex traits
 three laws of heritability, 53
computer games
 claims for increasing intelligence, 150–153
computers
 Watson (IBM computer), 4, 11
consciousness and creativity, 183–192
Continuity Hypothesis, 53–54
correlations
 between mental ability tests, 5–9
effects of restricted range of scores, 33–34
creativity and consciousness, 183–192
Crick, Francis, 183
CRISPR/Cas9 method of genome editing, 164, 178
crystallized intelligence, 9–10
cytosine (C), 59
Database of Raising Intelligence (NYU)
 four meta-analyses, 153–155
de Geus, Eco J.C., 37
deary, Ian, 30–32, 37
deep brain stimulation (DBS), 161–162
deGrasse Tyson, Neil, 1
Denmark Adoption Studies, 46–47
diffusion tensor imaging (DTI), 90
Discontinuity Hypothesis, 53–54
DNA
 analysis techniques, 56, 57–58, 60
 double-helix structure, 59
 sequencing, 60
 technologies and methods, 41
Doogie strain of mice, 56–57
Down's syndrome, 75–76
DREADD technique, 178
drugs
 ethical issues for cognitive enhancement (CE), 157–158
 psycho stimulant drugs, 156
to boost intelligence, 155–158
DUF1220 brain protein subtypes and IQ, 63
Dutch twin study, 51, 52
early education
 effect on IQ, 154
education policy
 neuro-poverty and the achievement gap, 196–200
educational achievement
 influential factors, 19–21
Einstein, Albert, 4, 9, 11
 Einstein's brain, 95–96
Index

electroconvulsive therapy (ECT), 159
emotional intelligence, 21
ENIGMA group, 134
environment and intelligence
quantitative genetics studies, 50–56
shared and non-shared environmental factors, 51–53
three-component model, 51–53
epigenetics, 38, 39–40, 59
ethical issues
cognitive enhancement, 157–158
eugenics, 30, 41
everyday life functioning
predictive validity of intelligence tests, 22–25
expertise, 22, 53–54
Facebook, 28, 180
factor analysis
alternative models of intelligence, 9–10
concept, 7
mental ability tests, 5–9
fairness of intelligence tests, 17–18
FDG (fluorodeoxyglucose) PET, 70–71
fluid intelligence, 9–10, 143–150
fluorescent protein studies, 177
Flynn Effect, 49
fractional anisotropy (FA) studies, 128, 131
See also diffusion tensor imaging
Frontal Dis-inhibition Model (F-DIM) of creativity, 189–190
frontotemporal dementia (FTD), 184–185, 189
functional literacy score
and the challenges of daily life, 23–24
functional MRI (fMRI), 91–92
future of intelligence research, 166–168
bridging animal and human research at the level of neurons, 175–179
challenges for the future, 200–201
chemogenetic technique, 178
chronometric testing, 168
cognitive neuroscience of memory and super-memory, 171–175
consciousness and creativity, 183–192
machine intelligence based on human intelligence, 179–183
neuro-poverty, 192–200
neuro-social–economic status, 192–200
optogenetic techniques, 177–178
public policy on neuro-poverty, 196–200
g-factor
and savant abilities, 11
distinction from IQ, 10–11
heritability, 54–55
in alternative factor-analysis models, 9–10
influence on daily life functioning, 22–25
nature of, 10–11
reasons for myths about, 33–35
relationships to specific mental abilities, 5–9
Galton, Francis, 26
Gamm, R., 174–175
gender differences
brain activity, 76–78
white matter correlations with IQ, 106
gene expression, 40
regulation of, 59
role of methylation, 59
types of, 38
genes
coding for proteins, 40
definition of a gene, 40, 59
forms of (alleles), 60
generalist genes, 41–42
locus on a chromosome, 60
molecular genetics research, 56–59
pleiotropy, 41–42
polygenicity of intelligence, 41–42
protein formation, 59
repeat copies at a locus, 60
structure of (base pairs), 60
genetic code, 59
genetic engineering
CRISPR/Cas9 method of genome editing, 164
Doogie strain of mice, 56–57
genetics
 basic concepts, 59–60
 genetics and intelligence, 40
 anti-genetic feeling, 40–41
 behavioral genetics, 41–42
 common genes for brain structure and intelligence, 126–128
 debate over, 43–45
 heritability of intelligence, 41–42
 three-component model, 51–53
 twin studies, 46–50
 genius, 14, 189
 genome, 59
 genome-wide association studies (GWAS), 60, 61–62
 genomic informatics, 60
 genomics, 59
 genotype, 41
 gifted children, 25–30, 32–33
 glucose metabolic rate (GMR), 71
 Google, 28, 180
 Gottfredson, Linda, 22
 Graduate Record Exam (GRE), 20
 graph analysis of neuroimaging data, 101–103
 Gray, Jeremy, 92
 guanine (G), 59
 guanylate kinase (MAGUK), 62
 Halstead, Ward C., 98
 Hawkins, Jeff, 179–180
 Head Start education program (USA), 42–45
 heritability of intelligence, 41–42
 Continuity Hypothesis, 53–54
 Discontinuity Hypothesis, 53–54
 effect of age at testing, 50–51
 three laws of complex traits, 53
 Herrnstein, Richard, 24–25, 197
 Holden, Constance, 81
 homotopic analysis of neuroimaging data, 103–104
 Human Brain Project, 181
 Human Connectome Project, 181–182
 human genome, 59
 Human Genome Project, 40, 166
 Hunt, Earl, 22

IMAGEN consortium, 134
increasing intelligence
 active reading for children, 154
 assessing claims for, 137–139, 153
 brain-altering technologies, 158–162
 childhood nutrition studies, 154
 claims for classical music, 139–143
 compensatory education programs, 42–45
 computer games, 150–153
 Database of Raising Intelligence (NYU) meta-analyses, 153–155
 deep brain stimulation (DBS), 161–162
 drugs to boost intelligence, 155–158
 early failures, 42–45
 effect of early education, 154
 effect of preschool attendance, 154–155
 ethical issues, 157–158
 fundamental problem of measurement, 138–139
 future possibilities, 163–164
 Head Start education program (USA), 42–45
 IQ pill, 155–158
 light from low-power “cold” lasers, 162
 memory training, 143–150
 missing weight of evidence for, 138–139, 162–164
 Mozart Effect, 139–143
 need for independent replication of studies, 153
 role of neurotransmitters, 155
 transcranial alternating current stimulation (tACS), 160–161
 transcranial direct current stimulation (tDCS), 159–160
 transcranial magnetic stimulation (TMS), 158–159
 independent component analysis, 104
 independent replication of studies, 153
 intelligence as a general mental ability, 4–5
 confounding with social–economic status (SES), 55–56, 192–200
 defining, 2–5, 123–124
 g-factor, 10–11
 g-factor relationships, 5–9
 influence on longevity, 30–32
involvement of multiple areas of the brain, 76–79
Parieto-Frontal Integration Theory (PFIT), 92–95
relationship to reasoning, 124–126
savant abilities, 2–4
intelligence genes
and genes for brain structure, 126–132
DNA analysis techniques, 57–58
evidence from neuroimaging and molecular genetics, 132–135
molecular genetics research, 56–59
problems with early candidate gene studies, 58–59
intelligence measurement
development of IQ testing, 11–15
key problem for, 18–19
reasons for myths about, 33–35
relative score problem, 18–19
intelligence research
defining intelligence, 4–5
negative connotations, 43–45
three laws governing, 168
See also future of intelligence research
intelligence testing
chronometric testing, 168
disadvantages of interval scales, 168–169
influence of age at testing, 50–51
limitations of psychometric tests, 168–169
mental age concept, 12–13
need for a ratio scale of measurement, 168–169
original purpose of, 11–12
predictive validity for everyday life functioning, 22–25
predictive validity for job performance, 21–22
predictive validity for learning ability, 19–21
predictive validity in longitudinal studies, 25–33
reasons for myths about, 33–35
intelligence tests
achievement tests, 16–17
alternatives to IQ tests, 15–17
analogy tests, 16
aptitude tests, 16–17
Binet–Simon intelligence test, 12–13
correlations between, 5–9
fairness of, 17–18
meaningfulness of, 17–18
Moray House Test, 31
myths about, 17–18
predictive value of, 18
question of bias, 17–18
Raven’s Advanced Progressive Matrices (RAPM) test, 15–16
SAT (Scholastic Assessment Test), 16–17
Stanford–Binet test, 13
time-limited tests, 15–16
Wechsler Adult Intelligence Scale (WAIS), 13–15
Wechsler Intelligence Scale for Children (WISC), 15
International Society for Intelligence Research (ISIR), 81, 92
IQ (intelligence quotient)
development of IQ testing, 11–15
distinction from g-factor, 10–11
IQ (intelligence quotient) score
as a relative measure, 13
average test score differences between groups, 34–35
calculation of deviation scores, 13–15
differences in group average scores, 43–45
Flynn Effect, 49
generation of norms, 14–15
genius range, 14
normal distribution of IQ scores, 14–15
original calculation for children, 12
relative scores issue, 18–19
stability over time, 30–32
IQ in The Meritocracy (Herrnstein), 25, 44, 192, 197
Jaeggi, Suzanne M., 143–150
Jensen, Arthur, 1, 41, 197, 198–199
chronometric testing, 169–171
 genetic basis of intelligence, 43–45
report on Burt’s twin studies, 48
review of compensatory education programs, 43–45
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>job performance</td>
</tr>
<tr>
<td>predictive ability of intelligence tests, 21–22</td>
</tr>
<tr>
<td>requirements for expertise, 22</td>
</tr>
<tr>
<td>Jung, Rex, 92, 119, 184, 189–190</td>
</tr>
<tr>
<td>Kennedy, John F., 166</td>
</tr>
<tr>
<td>Lady Gaga, 28</td>
</tr>
<tr>
<td>laser light</td>
</tr>
<tr>
<td>low-power “cold” laser brain stimulation, 162</td>
</tr>
<tr>
<td>Lashley, Karl, 176</td>
</tr>
<tr>
<td>Law School Admission Test (LSAT), 20</td>
</tr>
<tr>
<td>learning ability</td>
</tr>
<tr>
<td>predictive validity of intelligence tests, 19–21</td>
</tr>
<tr>
<td>learning and brain efficiency, 73–75</td>
</tr>
<tr>
<td>Lerner, Barbara, 1</td>
</tr>
<tr>
<td>life events</td>
</tr>
<tr>
<td>relative risk related to IQ, 23</td>
</tr>
<tr>
<td>longevity</td>
</tr>
<tr>
<td>influence of intelligence, 30–32</td>
</tr>
<tr>
<td>longitudinal studies</td>
</tr>
<tr>
<td>predictive validity of intelligence testing, 25–33</td>
</tr>
<tr>
<td>Lubinski, David, 30, 193</td>
</tr>
<tr>
<td>machine intelligence</td>
</tr>
<tr>
<td>based on human intelligence, 179–183</td>
</tr>
<tr>
<td>mathematical reasoning</td>
</tr>
<tr>
<td>gender differences in brain activity, 76–78</td>
</tr>
<tr>
<td>meaningfulness of intelligence tests, 17–18</td>
</tr>
<tr>
<td>Medical College Admission Test (MCAT), 20</td>
</tr>
<tr>
<td>MEG (magneto-encephalogram), 70</td>
</tr>
<tr>
<td>brain efficiency studies, 112–117</td>
</tr>
<tr>
<td>memory</td>
</tr>
<tr>
<td>cognitive neuroscience of memory and super-memory, 171–175</td>
</tr>
<tr>
<td>memory training</td>
</tr>
<tr>
<td>claims to increase intelligence, 143–150</td>
</tr>
<tr>
<td>mnemonic methods, 172–175</td>
</tr>
<tr>
<td>super-memory cases, 172–175</td>
</tr>
<tr>
<td>mental abilities</td>
</tr>
<tr>
<td>structure of, 5–9</td>
</tr>
<tr>
<td>mental ability tests</td>
</tr>
<tr>
<td>correlations between, 5–9</td>
</tr>
<tr>
<td>factor analysis, 5–9</td>
</tr>
<tr>
<td>positive manifold, 7, 8–9</td>
</tr>
<tr>
<td>mental age concept, 12–13</td>
</tr>
<tr>
<td>mental calculators, 174–175</td>
</tr>
<tr>
<td>methylation</td>
</tr>
<tr>
<td>role in gene expression regulation, 59</td>
</tr>
<tr>
<td>mice</td>
</tr>
<tr>
<td>Doogie strain, 56–57</td>
</tr>
<tr>
<td>Microsoft, 180</td>
</tr>
<tr>
<td>Miller, Zell, 141</td>
</tr>
<tr>
<td>Minnesota Multiphasic Personality Inventory (MMPI), 122</td>
</tr>
<tr>
<td>mnemonic methods of memory training, 172–174</td>
</tr>
<tr>
<td>molecular genetic studies, 61–66</td>
</tr>
<tr>
<td>benefits of a consortium approach, 61</td>
</tr>
<tr>
<td>brain proteins and IQ, 63</td>
</tr>
<tr>
<td>combined with neuroimaging studies, 132–135</td>
</tr>
<tr>
<td>construction of IQ-related neural pathways, 64–65</td>
</tr>
<tr>
<td>costs involved, 65</td>
</tr>
<tr>
<td>DUF1220 brain protein subtypes and IQ, 63</td>
</tr>
<tr>
<td>factors in recovery after traumatic brain injury, 62–63</td>
</tr>
<tr>
<td>GWAS search for intelligence genes, 61–62</td>
</tr>
<tr>
<td>neurobiology of intelligence, 61–62</td>
</tr>
<tr>
<td>research commitment in China, 64–65</td>
</tr>
<tr>
<td>SNPs and intelligence genes, 61</td>
</tr>
<tr>
<td>SNPs associated with general cognitive ability, 64</td>
</tr>
<tr>
<td>SNPs associated with variation in intelligence in children, 63–64</td>
</tr>
<tr>
<td>molecular genetics, 41–42</td>
</tr>
<tr>
<td>basic genetics concepts, 59–60</td>
</tr>
<tr>
<td>hunt for intelligence genes, 56–59</td>
</tr>
<tr>
<td>Montreal Neurological Institute (MNI) coordinates, 86</td>
</tr>
<tr>
<td>Moody, David E., 148–149</td>
</tr>
<tr>
<td>Moray House Test, 31</td>
</tr>
<tr>
<td>Mozart Effect, 139–143</td>
</tr>
</tbody>
</table>
Index

MR spectroscopy (MRS), 90–91
MRI (magnetic resonance imaging)
 basic structural MRI findings, 84–85
 diffusion tensor imaging (DTI), 90
 functional MRI (fMRI), 91–92
 imaging white matter tracts, 90–91
 improved MRI analyses, 85–89
MR spectroscopy (MRS), 90–91
 principles and techniques, 81–84
 size of brain regions and intelligence, 85
 voxel-based morphometry (VBM), 85–89
 voxels, 82–83
 whole brain size/volume and intelligence, 84–85
 multiple demand theory, 110
 multiple regression equations, 120–123
Murray, Charles, 24–25, 197
n-back test, 145–147
NAA (N-acetylaspartate)
 correlation with IQ, 90
nature– nurture debate
 all (or mostly) environment scenario, 39
 all (or mostly) gene scenario, 38–39
 Behaviorist view, 39
 Blank Slate view, 39
 epigenetic view, 39–40
 middle position, 39–40
 types of gene expression, 38
Neubauer, Aljoscha, 92
neutral pruning, 76
neuro-g, 108, 124
neuroimaging
 brain networks and intelligence, 100–110
 CAT scans, 69
 combined with molecular genetics, 132–135
 common genes for brain structure and intelligence, 126–132
 defining intelligence, 123–124
 early applications in intelligence research, 68–69
 findings from recent studies, 98–100
 functional brain efficiency, 110
 graph analysis of neuroimaging data, 101–103
 homotopic analysis of neuroimaging data, 103–104
 Parieto-Frontal Integration Theory (PFIT) of intelligence, 92–95
 predicting IQ from brain images, 118–124
 relationship between intelligence and reasoning, 124–126
 use of templates in brain image analysis, 122
 X-ray imaging, 69, 73
 See also MRI; PET
neuromorphic chip technology, 180
neuro-poverty, 192–200
 public policy approach, 196–200
 neuro-social-economic status, 192–200
Newt on, Isaac, 4, 9
NMDA (N-methyl d-aspartate) receptor, 56, 61–62
normal distribution of IQ scores, 13–15
 implications for social policy, 24–25
NR2B gene, 56
nucleotides (base pairs), 59, 60
nutrition in children
 influence on intelligence, 154
Obama, Barack, 166
obesity research, 42
optogenetic techniques, 177–178
Parieto-Frontal Integration Theory (PFIT)
 of intelligence, 92–95
 evidence from brain network studies, 100–110
 evidence from MEG studies, 114–117
 recent neuroimaging evidence, 99–100
Parkinson’s disease, 161
Pavacinni, Derek, 3–4, 11
Pee k, Kim, 3, 11
PET (positron emission tomography)
 brain activity during mathematical reasoning, 76–78
PET (positron emission tomography) (cont.)

brain activity in a non-problem solving situation, 78–79
brain activity in low-IQ groups, 75–76
brain efficiency and intelligence, 71–76
early PET studies of brain activity, 69–73
FDG (fluorodeoxyglucose) tracer, 70–71
gender differences in brain activity, 76–78
individual differences in brain activity, 76–79
learning and brain efficiency, 73–75
multiple areas involved in intelligence, 76–79
radioactive oxygen tracer, 70
radioactive tracers, 69–71
search for a center of intelligence in the brain, 80–81
what early studies revealed, 79–81

phenotype, 41
Pinker, Steven, 37, 45
pleiotropy, 41–42
Plomin, Robert, 37, 58, 65
polygenicity of intelligence, 41–42
positive manifold of mental ability tests, 7, 8–9
Posthuma, Danielle, 37
Prabhakaran, Vivek, 92
predicting IQ from brain images, 118–124
predictive value of intelligence tests, 18
longitudinal studies, 25–33
preschool attendance
effect on IQ, 154–155
profile analysis, 122–123
proteins
formation by genes, 59
genes coding for, 40
proteomics, 60
psychometric tests
limitations of, 168–169
public policy
neuro-poverty and the achievement gap, 196–200
relevance of intelligence research, 24–25
quantitative genetics, 41, 50–56
quantitative trait locus (QTL), 60
radioactive tracers, 69–71
Rauscher, Francis, 139–143
Raven’s Advanced Progressive Matrices (RAPM) test, 144
Raven’s Advanced Progressive Matrices (RAPM) test, 15–16
Reagan, Ronald, 166
reasoning
relationship to intelligence, 124–126
regression to the mean, 151
relative risk of life events
relationship to IQ, 23
RNA, 59
Rosenthal, David, 46–47
SAT (Scholastic Assessment Test), 16–17
SAT-Math, 27–30, 76–78
savant abilities, 2–4, 9, 11
schizophrenia research, 41, 42, 46–47
Scottish Mental Survey, 30–32, 121
Shaw, Gordon, 143
Shwachman–Diamond syndrome, 106
Simon, Theodore, 12–13
single-nucleotide polymorphisms (SNPs), 60, 61, 63–64
Skinner, B.F., 68
social–economic status (SES)
confounding with intelligence, 55–56, 192–200
heritability, 55–56
neuro-social–economic status, 192–200
social policy
relevance of intelligence research, 24–25
sociobiology, 25
Spearman, Charles, 7, 8–9
SSGAC (Social Science Genetic Association Consortium), 61
Stanford–Binet test, 13–15
Stanley, Julian, 27–28, 77
statistical issues
effects of restricted range of scores, 33–34
statistical parametric mapping (SPM), 85, 86
Steele, Kenneth, 142
Index

Stern, William, 12
structural equation modeling, 121
structure of mental abilities, 5–9
Study of Mathematically & Scientifically Precocious Youth, 27–30
SyNAPSE Program, 181
synesthesia, 3
Tammet, Daniel, 2–3
Terman, Lewis, 13, 25–27
Tetris, 74–75
The Bell Curve (Herrnstein and Murray), 24–25, 197
The Intelligent Brain (Haier, Great Courses), 10, 24, 68, 92, 115, 145, 170
Thompson, Paul, 92, 126, 128
Thurstone, Louis, 33–34
thymine (T), 59
time-limited intelligence tests, 15–16
traffic accident risk and IQ, 23
transcranial alternating current stimulation (tACS), 160–161
transcranial direct current stimulation (tDCS), 159–160
transcranial magnetic stimulation (TMS), 158–159
traumatic brain injury, 62–63, 103
twin studies, 41
Bouchard’s Minnesota study, 50
common genes for brain structure and intelligence, 126–131
dizygotic (fraternal) twins, 46
Dutch twin study, 51, 52
effect of age at intelligence testing, 50–51
genetic contribution to intelligence, 50
heritability of general intelligence, 50–51
heritability of the g-factor, 54–55
monozygotic (identical) twins, 46
neuroimaging and molecular genetics studies, 132
role of genetics in intelligence, 46–50
Sir Cyril Burt, 46–50
US military IQ score cutoff for recruits, 20
Val66Met gene polymorphism, 62–63, 132
voxel-based morphometry (VBM), 85–89
voxels, 82–83
Watson (IBM computer), 4, 11
Watson, John B., 37
Wechsler Adult Intelligence Scale (WAIS), 13–15
Wechsler Intelligence Scale for Children (WISC), 15
white matter fractional anisotropy (FA) studies, 128–130
MRI techniques, 90–91
Wilshire, Steven, 3
Wilson, Edward O., 25
X-ray imaging of the brain, 69
Zuckerberg, Mark, 28