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Inflation: theory and observations

A fundamental observational fact about our universe is that on large scales it is
well-described by the spatially flat Friedmann–Robertson–Walker (FRW) metric

ds2 = −dt2 + a2(t)dx 2 . (1.1)

In Section 1.1, we first explain why the homogeneity, isotropy, and flatness of the
universe encoded in (1.1) are puzzling in the standard cosmology. We then show
how an early phase of quasi-de Sitter evolution drives the primordial universe
towards these conditions, even if it started in an inhomogeneous, anisotropic, and
curved initial state. In Section 1.2, we argue that quantum fluctuations during
inflation are the origin of all structure in the universe, and we derive the power
spectra of scalar and tensor fluctuations. In Section 1.3, we describe the main
cosmological observables, which are used, in Section 1.4, to obtain constraints on
the inflationary parameters. We then review recent experimental results. Finally,
in Section 1.5, we discuss future prospects for testing the physics of inflation with
cosmological observations.

1.1 Horizon problem
1.1.1 The particle horizon

To discuss the causal structure of the FRW spacetime, we write the metric (1.1)
in terms of conformal time τ :

ds2 = a2(τ)
[
−dτ2 + dx 2

]
, (1.2)

so that the maximal comoving distance |Δx | that a particle can travel between
times τ1 and τ2 = τ1 + Δτ is simply |Δx | = Δτ , for any a(τ). In the standard
Big Bang cosmology, the expansion at early times is driven by the energy density
of radiation, and by tracing the evolution backward one finds that a → 0 at
sufficiently early times, and the spacetime becomes singular at this point. We
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2 Inflation: theory and observations

choose coordinates so that the initial singularity is at t = 0. At some time t > 0,
the maximal comoving distance a particle can have traversed since the initial
singularity (also known as the particle horizon) is given by

Δτ =
∫ t

0

dt′

a(t′)
=

∫ ln a(t)

−∞

d ln a

aH
, where H ≡ 1

a

da

dt
. (1.3)

During the standard Big Bang evolution, ä < 0 and the comoving Hubble radius
(aH)−1 = (ȧ)−1 grows with time. The integral in (1.3) is therefore dominated
by the contributions from late times. This leads to the so-called horizon prob-
lem. The amount of conformal time that elapses between the singularity and
the formation of the cosmic microwave background (an event known as recombi-
nation) is much smaller than the conformal time between recombination and
today (see Fig. 1.1). Quantitatively, one finds that points in the CMB that
are separated by more than one degree were never in causal contact, accord-
ing to the standard cosmology: their past light cones do not overlap before
the spacetime is terminated by the initial singularity. Yet their temperatures
are observed to be the same, to one part in 104. Moreover, the observed tem-
perature fluctuations are correlated on what seem to be superhorizon scales
at recombination. Not only must we explain why the CMB is so uniform, we
must also explain why its small fluctuations are correlated on apparently acausal
scales.

Fig. 1.1 Spacetime diagram illustrating the horizon problem in comoving coor-
dinates (figure adapted from [52]). The dotted vertical lines correspond to the
worldlines of comoving objects. We are the central worldline. The current red-
shifts of the comoving galaxies are labeled on each worldline. All events that
we currently observe are on our past light cone. The intersection of our past
light cone with the spacelike slice labeled CMB corresponds to two opposite
points on the CMB surface of last-scattering. The past light cones of these
points, shaded gray, do not overlap, so the points appear never to have been
in causal contact.
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1.1 Horizon problem 3

Fig. 1.2 Inflationary solution to the horizon problem. The comoving Hubble
sphere shrinks during inflation and expands during the conventional Big Bang
evolution (at least until dark energy takes over). Conformal time during
inflation is negative. The spacelike singularity of the standard Big Bang is
replaced by the reheating surface: rather than marking the beginning of time,
τ = 0 now corresponds to the transition from inflation to the standard Big
Bang evolution. All points in the CMB have overlapping past light cones and
therefore originated from a causally connected region of space.

1.1.2 Cosmic inflation

To address the horizon problem, we may postulate that the comoving Hubble
radius was decreasing in the early universe, so that the integral in (1.3) is
dominated by the contributions from early times. This introduces an additional
span of conformal time between the singularity and recombination (see Fig. 1.2):
in fact, conformal time now extends to negative values. If the period of decreasing
comoving Hubble radius is sufficiently prolonged, all points in the CMB origi-
nate from a causally connected region of space. The observed correlations can
therefore result from ordinary causal processes at early times.

In an expanding universe, a shrinking comoving Hubble sphere implies

d

dt
(aH)−1 = −1

a

[
Ḣ

H2 + 1

]
< 0 ⇒ ε ≡ − Ḣ

H2 < 1 . (1.4)
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4 Inflation: theory and observations

We will take the slow evolution of the Hubble parameter, ε < 1, as our definition
of inflation. This definition includes, but is not limited to, the dynamics of a
slowly rolling scalar field (see Section 2.2.1). In the de Sitter limit, ε → 0, the
space grows exponentially,

a(t) ∝ eHt , (1.5)

with H ≈ const.
Inflationary expansion requires a somewhat unconventional matter content. In

a spatially flat FRW universe supported by a perfect fluid, the Einstein equations
lead to the Friedmann equations,

3M2
plH

2 = ρ , (1.6)

6M2
pl(Ḣ + H2) = −(ρ + 3P ) , (1.7)

where ρ and P are the energy density and pressure of the fluid. Combining (1.6)
and (1.7), we find

2M2
plḢ = −(ρ + P ) , (1.8)

and hence

ε =
3
2

(
1 +

P

ρ

)
. (1.9)

Inflation therefore occurs when P < − 1
3 ρ, corresponding to a violation of the

strong energy condition (SEC), which for a perfect fluid states that ρ + P ≥ 0
and ρ + 3P ≥ 0. One simple energy source that can drive inflation is a positive
potential energy density of a scalar field with negligible kinetic energy, but we
will encounter a range of alternative mechanisms.

1.2 Primordial perturbations
With the new cosmology the universe must have been started off in some
very simple way. What, then, becomes of the initial conditions required by
dynamical theory? Plainly there cannot be any, or they must be trivial. We
are left in a situation which would be untenable with the old mechanics. If
the universe were simply the motion which follows from a given scheme of
equations of motion with trivial initial conditions, it could not contain the
complexity we observe. Quantum mechanics provides an escape from the
difficulty. It enables us to ascribe the complexity to the quantum jumps,
lying outside the scheme of equations of motion. The quantum jumps now
form the uncalculable part of natural phenomena, to replace the initial
conditions of the old mechanistic view.

P. A. M. Dirac [53].
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1.2 Primordial perturbations 5

Inflation not only explains the homogeneity of the universe, but also provides a
mechanism to create the primordial inhomogeneities required for structure forma-
tion [12–17]. This process happens automatically when we treat the inflationary
de Sitter phase quantum mechanically. Here, we briefly sketch the quantum gen-
eration of primordial fluctuations. We also present the modern view of inflation
as a symmetry-breaking phenomenon [50, 51]. For more details, see Appendices
B and C.

1.2.1 Goldstone action

By definition, inflation is a transient phase of accelerated expansion, correspond-
ing approximately, but not exactly, to a de Sitter solution. In order for inflation
to end, the time-translation invariance present in an eternal de Sitter spacetime
must be broken. The slow evolution of the Hubble parameter H(t) serves as a
clock that measures the progress of inflation, breaking time-translation invari-
ance and defining a preferred time slicing of the spacetime. The isometries of de
Sitter space, SO(4, 1), are spontaneously broken down to just spatial rotations
and translations. It is often useful to think of the time slicing as being defined by
the time-dependent expectation values ψm(t) of one or more bosonic fields ψm

(see Fig. 1.3).
As with spontaneously broken symmetries in flat-space quantum field theory

(see e.g. [54]), the broken symmetry is nonlinearly realized by a Goldstone boson.
Focusing on symmetry breaking and on the physics of the Goldstone boson allows
a model-insensitive description of fluctuations during inflation [51]. In particular,
we can defer consideration of the dynamics that created the background evolution
H(t), though ultimately we will return to explaining the background.

The Goldstone boson associated with the spontaneous breaking of time trans-
lation invariance is introduced as a spacetime-dependent transformation along
the direction of the broken symmetry, i.e. as a spacetime-dependent shift of the
time coordinate [50],

Fig. 1.3 Time-dependent background fields ψm(t) introduce a preferred time
slicing of de Sitter space.
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6 Inflation: theory and observations

U(t, x ) ≡ t + π(t, x ) . (1.10)

The Goldstone mode π parameterizes adiabatic fluctuations of the fields ψm,
i.e. perturbations corresponding to a common, local shift in time of the homoge-
neous fields,

δψm(t, x ) ≡ ψm

(
t + π(t, x )

) − ψm(t) . (1.11)

The Einstein equations couple the Goldstone boson π to metric fluctuations δgμν .
A convenient gauge for describing these fluctuations is the spatially flat gauge,
where the spatial part of the metric is unperturbed,

gij = a2(t)δij . (1.12)

The remaining metric fluctuations δg00 and δg0i are related to π by the Einstein
constraint equations. The dynamics of the coupled Goldstone-metric system can
therefore be described by π alone.

A second description of the same physics is sometimes convenient, especially in
the cosmological context. First, we note that, for purely adiabatic fluctuations,
we can perform a time reparameterization that removes all matter fluctuations,
δψm �→ 0. This takes us to comoving gauge, where the field π has been “eaten”
by the metric gμν . The spatial part of the metric can now be written as

gij = a2(t)e2R(t,x) δij , (1.13)

where R is called the comoving curvature perturbation. The other compo-
nents of the metric are related to R by the Einstein constraint equations (see
Appendix C). The relationship between π (in spatially flat gauge) and R (in
comoving gauge) is

R = −Hπ + · · · , (1.14)

where the ellipsis denotes terms that are higher order in π. This links the
comoving curvature perturbation R with the Goldstone boson π of spontaneous
symmetry breaking during inflation [55, 56].

The Goldstone mode π exists in every model of inflation. In single-field
inflation, π is the unique fluctuation mode [51], while in multi-field inflation,
additional light fields can contribute to R: see Appendix B. As we will see
in Chapter 4, string theory strongly motivates considering scenarios in which
multiple fields are light during inflation. However, from a purely bottom-up
perspective, extra light fields during inflation are not required by present obser-
vations, and in this section we will focus on the minimal case of a single light
field.

One can learn a great deal about the CMB perturbations by studying the Gold-
stone boson fluctuations alone. The physics of the Goldstone boson is described
by the low-energy effective action for π, which can be obtained by writing down
the most general Lorentz-invariant action for the field U ≡ t + π:
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1.2 Primordial perturbations 7

S =
∫

d4x
√−g L[U, (∂μU)2, �U, · · · ] . (1.15)

The action (1.15) is manifestly invariant under spatial diffeomorphisms, but
because π transforms nonlinearly under time translations, one says that time
translation symmetry is nonlinearly realized in (1.15). Expanding (1.15) in
powers of π and derivatives gives the effective action for the Goldstone mode. We
derive the Goldstone action in detail in Appendix B, via an alternative geometric
approach [50, 51], and present only the main results here. At quadratic order in
π, and to leading order in derivatives, one finds (cf. Eq. (B.77))

S(2)
π =

∫
d4x

√−g
M2

pl|Ḣ|
c2

s

[
π̇2 − c2

s

a2 (∂iπ)2 + 3εH2π2

]
, (1.16)

where (∂iπ)2 ≡ δij∂iπ∂jπ. Since Lorentz symmetry is broken by the time-
dependence of the background, we have the possibility of a nontrivial speed of
sound cs; standard slow-roll inflation (see Section 2.2.1) is recovered for cs = 1.
The field π has a small mass term, which arises from the mixing between π

and the metric fluctuations. Using (1.14), we can write (1.16) in terms of the
curvature perturbation R,

S
(2)
R =

1
2

∫
d4x a3 y2(t)

[
Ṙ2 − c2

s

a2 (∂iR)2

]
, (1.17)

where

y2 ≡ 2M2
pl

ε

c2
s

. (1.18)

The field R is therefore massless, implying – as we shall see – that it is conserved
on superhorizon scales [55].

For simplicity, we will assume that ε and cs are nearly constant, so that the
overall normalization of the action can be absorbed into the definition of a new,
canonically normalized, field

v ≡ y R =
∫

d3k
[
vk(t) ak eik ·x + c.c.

]
. (1.19)

We have written v in terms of time-independent stochastic parameters ak and
time-dependent mode functions vk(t). The mode functions satisfy the Mukhanov–
Sasaki equation,

v̈k + 3H v̇k +
c2

sk2

a2 vk = 0 . (1.20)

This is the equation of a simple harmonic oscillator with a friction term provided
by the expanding background. The oscillation frequency depends on the physical
momentum and is therefore time dependent:
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8 Inflation: theory and observations

Fig. 1.4 The evolution of curvature perturbations during and after inflation:
the comoving horizon (aH)

−1
shrinks during inflation and grows in the sub-

sequent FRW evolution. This implies that comoving scales (csk)
−1

exit the
horizon at early times and re-enter the horizon at late times. In physical coor-
dinates, the Hubble radius H

−1
is constant and the physical wavelength grows

exponentially, λ ∝ a(t) ∝ e
Ht

. For adiabatic fluctuations, the curvature pertur-
bations R do not evolve outside of the horizon, so the power spectrum PR(k)
at horizon exit during inflation can be related directly to CMB observables at
late times.

ωk(t) ≡ csk

a(t)
. (1.21)

At early times (small a), ωk  H for all modes of interest. In this limit, the
friction is irrelevant and the modes oscillate. However, the frequency of any given
mode drops exponentially during inflation. At late times (large a), the dynamics
is dominated by friction and the mode has a constant amplitude. We say that
the mode “freezes” at horizon crossing, i.e. when ωk(t�) = H or csk = aH(t�). It
is these constant superhorizon fluctuations that eventually become the density
fluctuations that we observe in the CMB and in LSS (see Fig. 1.4).1

1.2.2 Vacuum fluctuations

The initial conditions for v (or R) are computed by treating it as a quantum field
in a classical inflationary background spacetime. This calculation has become
textbook material [57, 58] and can also be found in many reviews (e.g. [27,
59]). We present the details in Appendix C. Here, we will restrict ourselves to a
simplified, but intuitive, computation [60].

1
Recall that we are assuming adiabatic initial conditions. The presence of entropy
perturbations, as in multi-field models, can complicate the relation between the curvature
perturbations at horizon crossing and the late-time observables – see Appendix C.
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1.2 Primordial perturbations 9

The Fourier modes of the classical field v are promoted to quantum operators

v̂k = vk(t)âk + h.c. (1.22)

At sufficiently early times, all modes of cosmological interest were deep inside
the Hubble radius. In this limit, each mode behaves as an ordinary harmonic
oscillator. The operators âk play the role of the annihilation operators of the
quantum oscillators. The vacuum state is defined by âk |0〉 = 0. The oscillation
amplitude will experience the same zero-point fluctuations as an oscillator in flat
space, 〈0|v̂

k
v̂

k
′ |0〉 = (2π)3|vk|2δ(k + k ′), where

|vk|2 =
1
a3

1
2ωk

. (1.23)

The factor of a−3 arises from the physical volume element in the Lagrangian
(1.17) – note that the Fourier mode vk was defined using the comoving coor-
dinates rather than the physical coordinates. The second factor, 1/(2ωk), is
the standard result for the variance of the amplitude of a harmonic oscillator
in its ground state. (In inflation, this state is the Bunch–Davies vacuum.) As
long as the physical wavelength of the mode is smaller than the Hubble radius,
the ground state will evolve adiabatically. Equation (1.23) then continues to
hold, and the precise time at which we define the initial condition is not impor-
tant. Once a given mode gets stretched outside the Hubble radius, the adiabatic
approximation breaks down and the fluctuation amplitude freezes at

|vk|2 =
1
2

1
a3

�

1
csk/a�

, (1.24)

where a� is the value of the scale factor at horizon crossing,

csk

a�

= H . (1.25)

Combining (1.25) and (1.24), we get

|vk|2 =
1
2

H2

(csk)3 , (1.26)

where from now on it is understood implicitly that the right-hand side is
evaluated at horizon crossing.

1.2.3 Curvature perturbations

Using (1.19), we obtain the power spectrum of primordial curvature perturba-
tions,

PR(k) ≡ |Rk|2 =
1
4

H4

M2
pl|Ḣ|cs

1
k3 . (1.27)
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10 Inflation: theory and observations

The variance in real space is 〈R2〉 =
∫

d ln k Δ2
R(k) , where we have defined the

dimensionless power spectrum

Δ2
R(k) ≡ k3

2π2 PR(k) =
1

8π2

H4

M2
pl|Ḣ|cs

. (1.28)

Since the right-hand side is supposed to be evaluated at horizon crossing, csk =
aH, any time dependence of H and cs translates into a scale dependence of the
power spectrum. Scale-invariant fluctuations correspond to Δ2

R(k) = const., and
deviations from scale invariance are quantified by the spectral tilt

ns − 1 ≡ d ln Δ2
R

d ln k
= −2ε − η̃ − κ , (1.29)

where we have defined two additional expansion parameters,

η̃ ≡ ε̇

Hε
and κ ≡ ċs

Hcs

. (1.30)

Inflationary backgrounds typically satisfy {ε, |η̃|, |κ|} � 1 and hence predict
ns ≈ 1. Inflation would not end if the slow-roll parameters vanished, so
importantly, we also expect a finite deviation from perfect scale invariance,
ns �= 1.

1.2.4 Gravitational waves

Arguably the cleanest prediction of inflation is a spectrum of primordial
gravitational waves. These are tensor perturbations to the spatial metric,

gij = a2(t)(δij + hij) , (1.31)

where hij is transverse and traceless. Expanding the Einstein–Hilbert action
leads to the quadratic action for the tensor fluctuations:

S
(2)
h =

1
2

∫
d4x a3 y2

[
(ḣij)2 − 1

a2 (∂khij)2

]
, (1.32)

where

y2 ≡ 1
4

M2
pl . (1.33)

The structure of the action is identical to that of the scalar fluctuations,
Eq. (1.17), except that tensors do not have a nontrivial sound speed and the
relation to the canonically normalized field does not include ε, because at linear
order tensors do not feel the symmetry breaking due to the background evo-
lution. The quantization of tensor fluctuations is therefore the same as for the
scalar fluctuations. In particular, Eq. (1.26) applies to each polarization mode of
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