Applying Graph Theory in Ecological Research

Graph theory can be applied to ecological questions in many ways, and more insights can be gained by expanding the range of graph theoretical concepts applied to a specific system. But how do you know which methods might be used? And what do you do with the graph once it has been obtained?

This book provides a broad introduction to the application of graph theory in different ecological systems, providing practical guidance for researchers in ecology and related fields. Readers are guided through the creation of an appropriate graph for the system being studied, including the application of spatial, spatio-temporal, and more abstract structural process graphs. Simple figures accompany the explanations to add clarity, and a broad range of ecological phenomena from many ecological systems are covered. This is the ideal book for graduate students and researchers looking to apply graph theoretical methods in their work.

Mark R. T. Dale is a Professor in the Ecosystem Science and Management Program at the University of Northern British Columbia and Dean of Regional Programs. His research interests include the spatial structure of plant communities and the development and evaluation of numerical methods to answer ecological questions, including applications of graph theory. He wrote *Spatial Pattern Analysis in Plant Ecology* (Cambridge, 1999) and was co-author, with Marie-Josée Fortin, of *Spatial Analysis: A Guide for Ecologists* (Cambridge, 2014).
Applying Graph Theory in Ecological Research

MARK R. T. DALE
University of Northern British Columbia
To my grandchildren:
Monroe and Elliot in Sydney;
Laura and Thomas in Edmonton
Contents

Preface

1 Graphs as Structure in the Ecological Context
 Introduction 1
 1.1 Graphs as Structure 3
 1.2 Graphs and Ecological Relationships 10
 1.3 Graphs and Locations: Spatial and Temporal 11
 1.4 Networks and Dynamics 17
 1.5 Graphs and Data 18
 1.6 Ecological Hypotheses and Graph Theory 27
 1.7 Statistical Tests and Hypothesis Evaluation 29
 1.8 Concluding Comments 35

2 Shapes of Graphs: Trees to Triangles
 Introduction 37
 2.1 Acyclic Graphs 37
 2.2 Digraphs and Directed Acyclic Graphs 41
 2.3 Weighted Directed Trees 45
 2.4 Lattice Graphs 46
 2.5 Triangles 49
 2.6 Smaller Than Triangles: Singletons, Isolated Pairs and Whiskers 50
 2.7 How It Looks 51
 2.8 Concluding Comments 52

3 Species Interaction Networks
 Introduction 54
 3.1 Objects 57
 3.2 Properties 60
 3.3 Generative Models 68
 3.4 Comparisons 72
 3.5 Concluding Comments 77
Contents

4 Trophic Networks: Structure, Partitioning and Dynamics
- Introduction
- 4.1 Trophic Networks and Derived Graphs 82
- 4.2 Trophic Network Characteristics 86
- 4.3 Concluding Comments 102

5 Species Associations, Communities and Graphs of Social Structure
- Introduction
- 5.1 Graphs of Social Structure 107
- 5.2 Cluster Detection in Graphs and Networks 113
- 5.3 Transitivity and Reciprocity 121
- 5.4 Balance 122
- 5.5 Change 124
- 5.6 Key Nodes; Key Edges 126
- 5.7 Concluding Comments 127

6 Competition: Hierarchies and Reversals
- Introduction
- 6.1 Concepts for Competition Interaction Graphs 130
- 6.2 Measuring Competitive Outcomes 135
- 6.3 Choosing Edges and Finding Hierarchies 137
- 6.4 Example: *Arabidopsis thaliana* Ecotypes 141
- 6.5 Concluding Comments 144

7 Mutualism, Parasitism and Bipartite Graphs
- Introduction
- 7.1 Internal Structure of Bipartite Graphs 147
- 7.2 Applications of Bipartite Graphs 158
- 7.3 Concluding Comments 163

8 Temporal or Time-Only Graphs
- Introduction
- 8.1 Properties of Temporal Graphs 170
- 8.2 Techniques for Temporal Graphs: Testing Significance 180
- 8.3 Applications of Techniques 183
- 8.4 Conclusions and Advice 185

9 Spatial Graphs
- Introduction
- 9.1 Properties of Spatial Graphs 193
Contents

9.2 Techniques for Spatial Graphs: Testing Significance and Other Assessments 201
9.3 Choice and Applications of Techniques 202
9.4 Concluding Comments 221

10 Spatio-temporal Graphs

Introduction 222
10.1 Characteristics 226
10.2 Two Spatio-temporal Properties 228
10.3 Examples of Ecological Applications 232
10.4 Concluding Comments 251

11 Graph Structure and System Function: Graphlet Methods

Introduction 252
11.1 Graphs for Structure and Dynamics in Ecological Systems 257
11.2 Graph Characteristics and Methods Based on Graphlets 259
11.3 Concluding Comments 269

12 Synthesis and Future Directions

Introduction 271
12.1 Comparisons and Matching 271
12.2 What Next? 276
12.3 Concluding Comments 285

Glossary 286
References 297
Index 328

Appendix 333
Colour plates are found between pages 212 and 213.
Preface

Applications of graph theory have been proliferating throughout ecology over the past several decades, whether explicitly realized or implicit in the approaches used, and not only in the cases which fall clearly into the popular category of networks. The reasons for this increased interest are as diverse as the areas of research. A basic impetus is that graphs and graph theory are about structure and provide the methods to analyze structure as abstracted from almost any ecological (or other) system. The second reason is the great popularity of network studies and network theory, originally applied to social relationships, communications (including the Internet as a prime example), transportation and the spread of disease. It is an obvious step to take network concepts and models from these sources and see how well they apply to ecological systems. Such network studies are obvious sources of inspiration for investigations of ecological interactions of all kinds (such as predation, competition, mutualism and facilitation) using the methods developed for those other systems. A third reinforcement for graph theory applications arises from the growing sophistication of ecologists in analyzing spatial data or time-ordered data or the complexities of spatio-temporal data; and, once again, methods based on graph theory provide the right mix of simplicity of concept but flexibility in application to provide valuable insights that would otherwise be impossible.

Putting together interaction networks and spatio-temporal data brings a researcher to the challenges and rewards of studying the interplay of form and function (or “pattern and process” or “structure and dynamics”) in ecological systems in which both form and function change through time by reciprocal influences and effects.

The book is organized in an order that reflects this range of sources. First is an introduction to thinking with graphs based on the theme of graphs and structure (Chapters 1 and 2). There are then several chapters on ecological interaction networks, first in general (Chapter 3), followed by more specific topics: predation (Chapter 4), social structure (Chapter 5), competition (Chapter 6) and mutualism (Chapter 7). The next three chapters are about locational graphs, in which the nodes have positions in one or more dimensions: time only (Chapter 8), space only (Chapter 9) and spatio-temporal (Chapter 10). Chapter 11 describes approaches to studying the dynamics of networks in the context of the reciprocal effects of form and function, focussing on the fascinating and promising methods based on graphlets. The last chapter (Chapter 12) attempts to draw together a number of the themes that emerged throughout the book and provide a synthesis of the common threads; it also takes on the risky task of making some predictions about future directions and developments to be expected in this field.
The working title started out as “Smart Things Ecologists Can Do with Graph Theory”; and that is a good description of the intention. The book is not primarily an introduction to graph theory developed for ecologists; it is intended to make researchers aware of the wide range of possibilities for their own research projects, even when (or especially when) they have yet to be fully tried out in ecological systems. A prime example is the many forms of analysis based on graphlets that are recently developed and applied in other biological systems (e.g. protein-protein interactions) but not yet in ecology. The goal is to provide enough background that the researcher knows how and where to start and where to find some examples that will provide inspiration and support. The treatments of the various topics are very heterogeneous; some have a good range of examples to be cited (e.g. food webs or trophic networks; mutualism), but others have virtually none.

My own interest in graph theory as a useful approach to answering ecological questions related to structure started with my MSc research many years ago, and I owe a large debt to my then-supervisor, Tony Yarranton, who suggested the area and encouraged my exploration of the field. I owe thanks to John Moon, who helped me understand some of the more formal aspects of graph theory and its application (look at his *Topics on Tournaments*, if you have not already: a great example). In acknowledging people who have helped with this book, I thank the following for reading chapters, sometimes as they developed: Alex Aravind, Tan Bao, Conan Vietech, JC Cahill and Brendan Wilson. I thank Marie-Josée Fortin, especially; she read all the chapters, and some more than once! For data used in examples, there are many to be acknowledged, including Tan Bao and JC Cahill for the *Arabidopsis* competition tournament material and Gord Thomas for the rich data set on Saskatchewan weed communities. I thank NSERC Canada and UNBC for their support over many years.

I greatly enjoyed writing this book, and discovering all the exciting material I had not known was very rewarding. It is my hope that the readers will find the work equally rewarding and that it will help create pathways to more that is useful, more that is new and more that is surprising.