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1 Graphs as Structure in the
Ecological Context

Introduction

Ecology is the study of organisms in the context of their environment, including both

abiotic effects and interactions among organisms. Ecologists, like other scientists, are

looking for patterns in these phenomena that can be used reliably to make predictions,

and those predictions can extend the findings to other organisms, to ecological systems

not yet studied or merely to similar groups of organisms in different places or at different

times. Those predictions may also refer to how a system’s form or structure determines

its function and dynamics and how function and dynamics constrain or modify structure

and form.

A long but not exhaustive list of the kinds of problems ecologists study might include

the following:

� the fate of individuals as determined by neighbours and environmental conditions
� the interactions of individuals in a social structure and their effects on population

dynamics
� the movement of individuals through their environment and their reactions to it
� the dynamics of populations and communities in fragmented habitats
� the flow of energy and the population and community effects of predation in trophic

networks
� the effects of competition, both intra- and inter-specific, on survival, growth and

reproduction
� the dynamics of species interactions, such as mutualism, commensalism and para-

sitism
� the determinants of species composition of multi-species communities in island sys-

tems

Almost all of these can be approached in a theoretical or abstracted way, or quite explic-

itly with locations in time or space, and almost all of these are studied in the context

of a system of some sort and usually in the context of that system’s structure. In fact,

explicit references to “structure” arise in almost every study of ecological systems, from

behaviour to trophic networks and from individuals to community interactions. The term

“structure” usually refers to how systems are put together or to the relationships among

units that determine how they work together. Structure, like pattern, suggests some
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2 1 Graphs as Structure in the Ecological Context

Figure 1.1 A graph. The basic graph consists of nodes (•) and edges (──) joining pairs of nodes.

Nodes can have labels, weights or locations. Edges can have directions, signs, weights,

functional equations or locations.

predictability in the way a phenomenon is organized, even if the process that gives rise

to it has a random origin or stochastic component, such as the fates of individual organ-

isms. Even structures generated by fully random processes may have predictable char-

acteristics, as we will see in Chapter 3. Graph theory is the mathematics of the basics

of structure (objects and their connections), providing a rich technical vocabulary and

a formal treatment of the concepts and outcomes. Because of the importance of under-

standing and quantifying structure in all ecological systems, graph theory has important

contributions to make to a broad range of ecological studies, including trophic networks

(Kondoh et al. 2010), mutualisms (Bascompte & Jordano 2014), epidemiology (Meyers

2007) and conservation ecology (Keitt et al. 1997), where the graphs depict functional

connections among organisms or physical connections among spatially structured pop-

ulations (Grant et al. 2007).

The graphs that are the focus of graph theory are deceptively simple mathematical

objects, each consisting of a set of points with a set of lines joining them in pairs. The

points are called nodes, represented by dots in a diagram (Figure 1.1), and the lines are

edges, represented by straight or curving lines in a diagram, although a range of terms

can be found in the literature (see Harary 1969; West 2001).

Graphs are about connections and the pattern of connections. In a diagram of the

most basic graph, the positions of the nodes on the page and the lengths and shapes of

the edges joining them have no meaning; they are placed for convenience and clarity. It

is the set of connections made by the edges that determines the graph’s topology. The

nodes usually represent components or units of organization, and the essence of the

graph lies in what is connected to what: really very simple! In this way, the graph is an

abstract description of structure or topology because the edges show the relationships

among organizational components that the nodes represent.

Graphs and graph theory lend themselves extremely well to applications in many

areas of science because there is a wealth of mathematical knowledge that has been

developed over the years from studying these simple components. Graph theory inves-

tigates all aspects of combinations of nodes with edges joining them; and “all” is no

exaggeration. What is continually impressive about graph theory is the way that it can go

from what seems simple and intuitive to very sophisticated (and, yes, difficult) results;

advances in recent decades have really changed the field, and it has important links (pun

intended) to many other branches of mathematics, such as algebra, number theory and
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1.1 Graphs as Structure 3

topology. An obvious example is the application of graph theory to understanding the

properties and vulnerabilities of information networks like the Internet.

A second reason for the great value of graph theory for ecologists is the flexibility

of the approach for meaningful applications to a range of ecological phenomena. This

is accomplished by including different characteristics in the graphs beyond the simple

nodes and edges. These include the following:

� node labels that identify the node as an individual and identifiable component of the

system, such as a species name; labels make a difference when counting the number

of different structures
� node weights that record qualitative or quantitative characteristics of the components,

such as relative abundance
� node locations: the nodes may have spatial or temporal locations, such as the time and

place of a single predation event; temporal location allows the possibility of nodes that

come into existence or cease to exist

and

� directions for the edges so that A to B is distinct from B to A
� signs for the edges, indicating positive or negative interactions between the nodes
� weights for the edges, or equations describing flow or function
� locations for the edges, spatial or temporal, dependent on the locations of their end-

nodes; temporal location allows edges to come into existence or cease to exist

For example, nodes could represent identifiable landscape patches of known locations

in a particular year, with their areas as weights; the edges could be movement corridors

with weights related to how frequently or how easily the routes can be used for dispersal.

This introductory chapter describes the concepts and terminology that form the foun-

dations of a tour through graph theory and the smart ways to use it for understanding

ecological phenomena. This tour illustrates the assertion that these graphs are about

structure and the pattern of relationships that are the essence of structure. A subtle dis-

tinction here is that despite the fact that “graph” and “network” have come to be almost

synonymous, “graph theory” is still more about structure and “network theory” is more

about function and flow.

1.1 Graphs as Structure

The branch of mathematics that we know as graph theory has arisen from a number of

different sources, developed to solve problems in diverse fields. The most famous of

these is Euler’s solution in 1736 to the “Königsberg bridge problem,” which concerned

walking routes around two islands in a river with seven bridges over it. By converting the

question into a general problem about graphs, it could be shown that a closed route that

crossed each bridge exactly once was impossible (Euler, as cited in Biggs et al. 1976).

This solution is usually cited as the beginning of graph theory, although Tutte (1998)

has suggested that the discipline might date back to ancient times and the study of
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4 1 Graphs as Structure in the Ecological Context

Platonic solids (tetrahedron, octahedron, etc.), which are essentially symmetric graphs

on the sphere. Another origin is Kirchhoff’s studies of 1847 (Biggs et al. 1976) on the

flow of electricity through a network of circuits with different characteristics. A third

beginning is Cayley’s work on the combinatorics of the chemical structures of organic

compounds (e.g. butane and its isomer, isobutene) and the structurally different forms

any one chemical might take (Cayley 1857). Other possible sources of the discipline

include studies of map colouring problems (any map can be coloured with only four

colours), interactions between molecules in statistical mechanics and Markov chains

in probability theory (see Harary 1969, Chapter 1). I would, however, add a different,

fourth area to the list of inspirations, and that is the study of networks of positive and

negative interactions between individuals in a social setting, with developments due to

Harary and co-workers from the 1950s.

All these problems are clearly about structure, the structure associated with

1 spatial constraints on physical routes

2 energy flow in a system with alternate pathways and different resistance characteris-

tics

3 physical forms from combinations of component units (atoms)

4 relationships in interaction networks

All these sources of graph theory as a branch of mathematics have close parallels in

ecological research, and all require, and take advantage of, different characteristics and

results developed in that discipline.

In mathematical terms, a graph is an object made up of two sets: nodes (also points or

vertices) and edges (the lines, also called arcs or links) that join pairs of nodes (Harary

1969; West 2001; see Box 1.1). Therefore, graph G can be seen as an ordered pair of

sets V and E:

G = (V, E ) with E being pairs of the elements of V.

Less formally,

graph = {nodes} and {edge joining pairs of nodes}; say n nodes and m edges.

The density of edges is measured by the connectance, which is the proportion of

possible edge positions actually occupied; here 2m/n (n − 1). (This is not the same

as a graph being connected, with a path between any two nodes, nor is it the same

as connectivity, which measures how difficult it is to separate a connected graph into

pieces.)

In contemporary usage, the terms “graph” and “network” are used interchangeably

as equivalents (Estrada 2012), although previous practice was to reserve “network” for

graphs or digraphs which had a real number (weight) assigned to each edge (Harary

1969), such as those in trophic networks or transportation systems. Digraph networks,

with directed edges, are frequently used to study the flow of material or information,

one of the most important applications of graph theory, and for such applications, each

edge can have several weights, including capacity, flow and cost (Bang-Jensen & Gutin

2009).
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1.1 Graphs as Structure 5

Box 1.1 Graph Theory: Checklist of Objects

Each term has a sketchy phrase to hint at its meaning, rather than a full definition,

for which see the text and the Glossary. This is not all the graph theory we need but

much of the important material in a concise format. Not everything required will fit

into Chapter 1; more will be introduced as needed.

1.1.1 Graphs

Graph (nodes and edges)

Subgraph (subsets of graph’s nodes and edges)

Induced Subgraph (subset of nodes, and all edges of the original graph joining those

nodes)

Connected Graph (path exists between any two nodes)

Tree (connected with no cycles)

Dendrogram (binary tree, often from cluster analysis)

Complete Graph (all possible edges are included)

Bipartite Graph (nodes in two distinct subsets)

Digraph (directed edges)

Tournament (each pair of nodes has a one-way outcome edge)

Signed Graph and Digraph (edges are positive or negative)

Weighted Graph (nodes or edges have weights)

Weighted Digraph (ditto and edges have directions)

Line Graph (edges become nodes in the derived line graph)

Network (same as graph, or graph with directed weighted edges)

Dynamic Network (changes through time, either edges or their weights)

Spatial Graphs (nodes located in space [vs aspatial])

Temporal Graphs [many names] (nodes located in time [vs atemporal])

Spatio-temporal Graphs (nodes located in time and space)

Planar Graph (can be drawn flat without edges crossing)

Dendrogram (clustering process and levels of joins)

1.1.2 Parts of Graphs

Subgraph (subsets of nodes and edges)

Cut-point (node removal disconnects)

Cut-edge (edges removal disconnects)

Block (maximal connected subgraph with no cut-points)

Walk (sequence of nodes and their edges; may re-use)

Path (sequence of nodes and edges, no re-use)

Closed Walk (ends at its beginning node)

Cycle (path that ends at its beginning node)

Clique (complete subgraph)

Tree “Leaf Node” (degree = 1; “object” in classification dendrogram)

Tree “Branch Node” (degree > 1; joins objects into groups in dendrogram)

Spanning Tree (connected subgraph with all nodes, but no cycles)

Clusters or Modules (subgraphs well connected within, few connections out)

Components (maximal connected subgraphs)
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6 1 Graphs as Structure in the Ecological Context

Graph is disconnected by removal of node K (cut-point) 

or edge BK (cut-edge)
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Figure 1.2 Children who play together. The graph is disconnected by removal of node K

(a cut-point) or edge BK (a bridge or cut-edge).

Graph theory is usually introduced by formal development, and we cannot avoid that

altogether; but we will introduce much of the basic terminology through an example,

not trying to cover everything, with more to be introduced in later sections as required.

The introductory narrative will be complemented by a checklist table of terms (Box

1.2) as well as the figures that go with them. This book also has a Glossary that collects

almost all of the terms introduced throughout the chapters in one place.

To start with an instructive and almost-ecological example, consider children on a

playground. Each child is represented by a node of a graph, G, and a simple edge is used

to indicate which children are playing together during an observation period (Figure

1.2). There may be large and small groups, or individuals may play mostly alone. We

can use graph-theoretical properties to evaluate this social structure for average number

of playmates, maximum number of shared-play relationships between any two children

and so on, and to determine the most coherent clusters. Each child has a name, and so

each node has a natural label. The degree of a node is the number of edges attached to

it, the number of nodes that are its neighbours. In the playground example, the degree

is the number of shared-play interactions, ranging from 1 (nodes G or J) to 5 (node E),

averaging around 2.5.

In Figure 1.2, all the children are joined together by at least one sequence of edges

through the graph, so that a rumour that is passed only between these pairs of playmates

will reach all children. That is, the graph is connected, because there is a path along

nodes and edges between any pair of nodes. It will become disconnected, however, if

child K leaves (that node is a cut-point) or if B and K become estranged and no longer

play together (edge BK is a cut-edge) (see Figure 1.2, bottom). There are two obvious

clusters or modules, AIH and BCDE, which are subgraphs of the whole structure. A
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Figure 1.3 Children who play together. (top) Older children indicated by larger nodes. The

subgraph of BCDE is a complete graph or clique. (bottom) Nodes with weights of minutes in

playground; edges with weights of shared play time (in bold).

subgraph of G is itself a graph of which the nodes are a subset of the nodes of G and

the edges are a subset of the edges of G.

Each node can also be categorized by age and gender, and so it can be determined

in which categories the graph is assortative (most edges between nodes in the same

category) or disassortative (most edges between nodes in different categories). In our

playground example, the graph tends to be associative for age, mainly because of the

clique (a complete subgraph, i.e. with all nodes joined to all nodes) of four older children

(B, C, D and E), as shown in Figure 1.3 (top).

Further properties include a weight for each node, such as the total time on the play-

ground, and weights for each edge, such as the total time or proportion of time the two

children play together (Figure 1.3, bottom). The simple graph of nodes and edges in the

figure is aspatial; space is not explicitly included, but the data on which it is based are

probably truly spatial, if they were to be thus recorded. For example, some groupings

may tend to spend their time by the slides and others by the swings. For some purposes,

this spatial information could be included in the graph. Similarly, the graph shown is

atemporal, but an explicitly temporal graph could be created by recording the different

combinations of children at different times of day or by recording the changing links as

friendships form and dissolve, evidenced by shared time on the playground. The latter

approach gives a dynamic graph or network.

Of course, there are many different ways to define the edges of a graph for the same

children in the playground. For example, with children, unlike some of the animals we

study, we can complement the observational data by asking them their opinions of the
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8 1 Graphs as Structure in the Ecological Context
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Directed Graph: Who is your best friend?

Figure 1.4 Children who play together. Nodes HKBEF with edges between form a path. Nodes

AIH with three edges form a cycle. Nodes BCDE with their six edges form a subgraph, a

complete graph and a module. The (undirected) graph (top) becomes a digraph (directed graph)

(bottom) based on “Who is your best friend?”

others: Who do they like? Who is their best friend? and so on. This gives edges that have

direction, because B may consider C to be their best friend, but the “best friend” rela-

tionship is not always reciprocated (Figure 1.4). Directional edges allow the inclusion of

asymmetric relationships. They also mean that the degree of each node can be divided

according to “arrow toward” edges, in-degree, and “arrow away” edges, out-degree. (In

the digraph of Figure 1.4, node E has an in-degree of 2 and an out-degree of 1.)

So far only edges of shared play or liking, which are positive edges, have been

included in the graph, but it might also include negative edges indicated pairs that never

play together or that actively avoid each other; this gives signs to the edges creating a

signed graph (Figure 1.5). By allowing asymmetric “like” and “dislike” for any pair of

nodes, the graph then has edges that are signed and directed, allowing A to B to dif-

fer from B to A (see nodes K and E in Figure 1.5b). To refine further to include the

intensity of “like” and “dislike,” the edges may also have quantitative weights. In a real

study of social structure, it would be interesting to compare the graph based on observed

behaviour and the graph based on stated opinion . . .

A child shows up with a bad cold one day, and the cold spreads among the children

from playmate to playmate following the edges of the shared-play graph. How far and

fast the cold spreads will depend in part on the position of the initial carrier in the social

network, how well connected and how central within the whole population (compare

nodes B and J). The spread of the disease will follow a path in that graph consisting of

a series of nodes and the edges joining them. In a path, the elements are not re-used,

and in this case, the disease does not return to a child who has already had it, and so no

cycles are formed. (A cycle is a path that ends where it began, such as A – H – I – A
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(a) Mutual “like” or “dislike”

Graph: nodes (•) and signed edges: (solid = +ve; do�ed = -ve). 
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(b) Asymmetric  “like” or “dislike”

Digraph of direc�onal edges with signs.  
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Figure 1.5 Playground children: likes and dislikes. (a) Mutual “like” or “dislike.” Graph: nodes

(•) and signed edges: (solid = +ve; dotted = −ve). Two complete subgraph modules: {A,H,I} &

{B,C,D,E}.) (b) Asymmetric “like” or “dislike.” Digraph of directional edges with signs. Some

relationships are reciprocal: HK, BC. Some are not; the association of K with E is +ve, but the

association of E with K is −ve.

in Figure 1.2.) A connected graph without cycles is called a tree. The trace of the disease

through the shared-play graph is a subgraph that is a tree (Figure 1.6); the nodes are the

same as in the original graph, but the edges representing the relationships are different.

The edges could be labelled with directions if the actual process of disease spread was

known, and they could also be labelled with dates or the order of infection if those

data were available. The nodes of a tree are called “leaf” nodes if they have degree 1;

“branch” nodes have degree 2 or higher; and the “root” node is a specially designated

node that is functionally unique, such as the common ancestor in a phylogeny or the

river mouth in a drainage basin, with its meaning depending on the application.

As another example of alternate rules for edges, consider the following. On Saturday

morning, each of the four older children is assigned one, two or three of the others to

A B

D
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F
G

E
I H

K

J

Figure 1.6 A tree made up of shared-play edges showing how a cold may spread. A tree has no

cycles. A, I, G, J, D and C are leaf nodes. H, K, B, E and F are branch nodes. No node is

identified as the root.
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This connected graph is also bipar�te 

(ABCD | EFGH).

FG

Figure 1.7 Bipartite graph of math coaching in the playground group; this one is disconnected.

The lower connected graph is also bipartite (ABCD | EFGH); it is a ring graph and regular

because all nodes have the same degree (2).

help coach them in their math skills. This creates a new set of edges that can replace

the friendship edges of shared play; with the nodes representing the same individuals

and the edges now representing that coaching relationship (Figure 1.7). Here the edges

all join older to younger children, with no edges within either age cohort, giving what

is called a bipartite graph for obvious reasons. In our example, the graph is discon-

nected (some nodes not joined by a path) and consists of four components (connected

subgraphs).

This narrative has introduced some of the most ecologically important aspects of

graphs. These are the basics only and more terms and concepts are introduced through-

out the chapters that follow. All are provided in the Glossary at the end of the book.

1.2 Graphs and Ecological Relationships

The objects in ecological studies, which are to be the nodes of a graph, are often individ-

ual organisms, populations, communities, or defined spatial areas like habitat patches;

and the objects are linked by physiological, behavioural, physical and dispersal pro-

cesses. The edges between objects vary in weight and in vulnerability versus persis-

tence, according to the nature and intensity of the ecological processes. Research in the

related fields of evolutionary biology, population genetics and epidemiology, have as

the usual objects individual organisms or other units such as taxa, traits, genes, molec-

ular markers and so on. The edges between these nodes are the relationships of evo-

lutionary history, functional pathways, measured similarity or ecological interactions.

Graphs of these systems have the objects as nodes and their relationships as the edges

(Harary 1969; West 2001; Bang-Jensen & Gutin 2009; Lesne 2006; Kolaczyk 2009).

These graphs of relationships can be thought of as “abstracted” structures, because they
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