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‘An understanding of the remarkable properties of the Poisson process is
essential for anyone interested in the mathematical theory of probability or
in its many fields of application. This book is a lucid and thorough account,
rigorous but not pedantic, and accessible to any reader familiar with mod-
ern mathematics at first-degree level. Its publication is most welcome.’

— J. F. C. Kingman, University of Bristol

‘I have always considered the Poisson process to be a cornerstone of applied
probability. This excellent book demonstrates that it is a whole world in and
of itself. The text is exciting and indispensable to anyone who works in this
field.’

— Dietrich Stoyan, TU Bergakademie Freiberg

‘Last and Penrose’s Lectures on the Poisson Process constitutes a splendid
addition to the monograph literature on point processes. While emphasis-
ing the Poisson and related processes, their mathematical approach also
covers the basic theory of random measures and various applications,
especially to stochastic geometry. They assume a sound grounding in
measure-theoretic probability, which is well summarised in two appen-
dices (on measure and probability theory). Abundant exercises conclude
each of the twenty-two “lectures” which include examples illustrating their
“course” material. It is a first-class complement to John Kingman’s essay
on the Poisson process.’

— Daryl Daley, University of Melbourne

‘Pick n points uniformly and independently in a cube of volume n in
Euclidean space. The limit of these random configurations as n → ∞

is the Poisson process. This book, written by two of the foremost experts
on point processes, gives a masterful overview of the Poisson process and
some of its relatives. Classical tenets of the theory, like thinning properties
and Campbell’s formula, are followed by modern developments, such as
Liggett’s extra heads theorem, Fock space, permanental processes and the
Boolean model. Numerous exercises throughout the book challenge read-
ers and bring them to the edge of current theory.’

— Yuval Peres, Principal Researcher, Microsoft Research,

and Foreign Associate, National Academy of Sciences
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Lectures on the Poisson Process

The Poisson process, a core object in modern probability, enjoys a richer theory than is

sometimes appreciated. This volume develops the theory in the setting of a general

abstract measure space, establishing basic results and properties as well as certain

advanced topics in the stochastic analysis of the Poisson process. Also discussed are

applications and related topics in stochastic geometry, including stationary point

processes, the Boolean model, the Gilbert graph, stable allocations and hyperplane

processes. Comprehensive, rigorous, and self-contained, this text is ideal for graduate

courses or for self-study, with a substantial number of exercises for each chapter.

Mathematical prerequisites, mainly a sound knowledge of measure-theoretic

probability, are kept in the background, but are reviewed comprehensively in an

appendix. The authors are well-known researchers in probability theory, especially

stochastic geometry. Their approach is informed both by their research and by their

extensive experience in teaching at undergraduate and graduate levels.

G Ü N T E R L A S T is Professor of Stochastics at the Karlsruhe Institute of Technology.

He is a distinguished probabilist with particular expertise in stochastic geometry, point

processes and random measures. He has coauthored a research monograph on marked

point processes on the line as well as two textbooks on general mathematics. He has

given many invited talks on his research worldwide.

M AT H E W P E N R O S E is Professor of Probability at the University of Bath. He is an

internationally leading researcher in stochastic geometry and applied probability and

is the author of the influential monograph Random Geometric Graphs. He received the

Friedrich Wilhelm Bessel Research Award from the Humboldt Foundation in 2008,

and has held visiting positions as guest lecturer in New Delhi, Karlsruhe, San Diego,

Birmingham and Lille.
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Preface

The Poisson process generates point patterns in a purely random manner.

It plays a fundamental role in probability theory and its applications, and

enjoys a rich and beautiful theory. While many of the applications involve

point processes on the line, or more generally in Euclidean space, many

others do not. Fortunately, one can develop much of the theory in the ab-

stract setting of a general measurable space.

We have prepared the present volume so as to provide a modern textbook

on the general Poisson process. Despite its importance, there are not many

monographs or graduate texts with the Poisson process as their main point

of focus, for example by comparison with the topic of Brownian motion.

This is probably due to a viewpoint that the theory of Poisson processes

on its own is too insubstantial to merit such a treatment. Such a viewpoint

now seems out of date, especially in view of recent developments in the

stochastic analysis of the Poisson process. We also extend our remit to top-

ics in stochastic geometry, which is concerned with mathematical models

for random geometric structures [4, 5, 23, 45, 123, 126, 147]. The Poisson

process is fundamental to stochastic geometry, and the applications areas

discussed in this book lie largely in this direction, reflecting the taste and

expertise of the authors. In particular, we discuss Voronoi tessellations, sta-

ble allocations, hyperplane processes, the Boolean model and the Gilbert

graph.

Besides stochastic geometry, there are many other fields of application

of the Poisson process. These include Lévy processes [10, 83], Brownian

excursion theory [140], queueing networks [6, 149], and Poisson limits in

extreme value theory [139]. Although we do not cover these topics here,

we hope nevertheless that this book will be a useful resource for people

working in these and related areas.

This book is intended to be a basis for graduate courses or seminars on

the Poisson process. It might also serve as an introduction to point process

theory. Each chapter is supposed to cover material that can be presented

xv

www.cambridge.org/9781107088016
www.cambridge.org


Cambridge University Press
978-1-107-08801-6 — Lectures on the Poisson Process
Günter Last , Mathew Penrose 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

xvi Preface

(at least in principle) in a single lecture. In practice, it may not always be

possible to get through an entire chapter in one lecture; however, in most

chapters the most essential material is presented in the early part of the

chapter, and the later part could feasibly be left as background reading if

necessary. While it is recommended to read the earlier chapters in a linear

order at least up to Chapter 5, there is some scope for the reader to pick

and choose from the later chapters. For example, a reader more interested

in stochastic geometry could look at Chapters 8–11 and 16–17. A reader

wishing to focus on the general abstract theory of Poisson processes could

look at Chapters 6, 7, 12, 13 and 18–21. A reader wishing initially to take

on slightly easier material could look at Chapters 7–9, 13 and 15–17.

The book divides loosely into three parts. In the first part we develop

basic results on the Poisson process in the general setting. In the second

part we introduce models and results of stochastic geometry, most but not

all of which are based on the Poisson process, and which are most naturally

developed in the Euclidean setting. Chapters 8, 9, 10, 16, 17 and 22 are de-

voted exclusively to stochastic geometry while other chapters use stochas-

tic geometry models for illustrating the theory. In the third part we return

to the general setting and describe more advanced results on the stochastic

analysis of the Poisson process.

Our treatment requires a sound knowledge of measure-theoretic proba-

bility theory. However, specific knowledge of stochastic processes is not

assumed. Since the focus is always on the probabilistic structure, technical

issues of measure theory are kept in the background, whenever possible.

Some basic facts from measure and probability theory are collected in the

appendices.

When treating a classical and central subject of probability theory, a cer-

tain overlap with other books is inevitable. Much of the material of the ear-

lier chapters, for instance, can also be found (in a slightly more restricted

form) in the highly recommended book [75] by J.F.C. Kingman. Further

results on Poisson processes, as well as on general random measures and

point processes, are presented in the monographs [6, 23, 27, 53, 62, 63,

69, 88, 107, 134, 139]. The recent monograph Kallenberg [65] provides

an excellent systematic account of the modern theory of random measures.

Comments on the early history of the Poisson process, on the history of

the main results presented in this book and on the literature are given in

Appendix C.

In preparing this manuscript we have benefited from comments on ear-

lier versions from Daryl Daley, Fabian Gieringer, Christian Hirsch, Daniel

Hug, Olav Kallenberg, Paul Keeler, Martin Möhle, Franz Nestmann, Jim
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Pitman, Matthias Schulte, Tomasz Rolski, Dietrich Stoyan, Christoph Thä-

le, Hermann Thorisson and Hans Zessin, for which we are most grateful.

Thanks are due to Franz Nestmann for producing the figures. We also wish

to thank Olav Kallenberg for making available to us an early version of his

monograph [65].

Günter Last

Mathew Penrose
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Symbols

Z = {0, 1,−1, 2,−2, . . .} set of integers

N = {1, 2, 3, 4, . . .} set of positive integers

N0 = {0, 1, 2, . . .} set of non-negative integers

N = N ∪ {∞} extended set of positive integers

N0 = N0 ∪ {∞} extended set of non-negative integers

R = (−∞,∞),R+ = [0,∞) real line (resp. non-negative real half-line)

R = R ∪ {−∞,∞} extended real line

R+ = R+ ∪ {∞} = [0,∞] extended half-line

R(X),R+(X) R-valued (resp. R+-valued) measurable functions on X

R(X),R+(X) R-valued (resp. R+-valued) measurable functions on X

u+, u− positive and negative part of an R-valued function u

a ∧ b, a ∨ b minimum (resp. maximum) of a, b ∈ R

1{·} indicator function

a⊕ := 1{a � 0}a−1 generalised inverse of a ∈ R

card A = |A| number of elements of a set A

[n] {1, . . . , n}

Σn group of permutations of [n]

Πn,Π
∗
n set of all partitions (resp. subpartitions) of [n]

(n)k = n · · · (n − k + 1) descending factorial

δx Dirac measure at the point x

N<∞(X) ≡ N<∞ set of all finite counting measures on X

N(X) ≡ N set of all countable sums of measures from N<∞

Nl(X),Ns(X) set of all locally finite (resp. simple) measures in N(X)

Nls(X) := Nl(X) ∩ Ns(X) set of all locally finite and simple measures in N(X)

x ∈ µ short for µ{x} = µ({x}) > 0, µ ∈ N

νB restriction of a measure ν to a measurable set B

xix
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xx List of Symbols

B(X) Borel σ-field on a metric space X

Xb bounded Borel subsets of a metric space X

Rd Euclidean space of dimension d ∈ N

Bd := B(Rd) Borel σ-field on Rd

λd Lebesgue measure on (Rd,Bd)

‖ · ‖ Euclidean norm on Rd

〈·, ·〉 Euclidean scalar product on Rd

Cd,C(d) compact (resp. non-empty compact) subsets of Rd

Kd,K (d) compact (resp. non-empty compact) convex subsets of Rd

Rd convex ring in Rd (finite unions of convex sets)

K + x,K − x translation of K ⊂ Rd by x (resp. −x)

K ⊕ L Minkowski sum of K, L ⊂ Rd

V0, . . . ,Vd intrinsic volumes

φi =

∫
Vi(K)Q(dK) i-th mean intrinsic volume of a typical grain

B(x, r) closed ball with centre x and radius r ≥ 0

κd = λd(Bd) volume of the unit ball in Rd

< strict lexicographical order on Rd

l(B) lexicographic minimum of a non-empty finite set B ⊂ Rd

(Ω,F ,P) probability space

E[X] expectation of a random variable X

Var[X] variance of a random variable X

Cov[X,Y] covariance between random variables X and Y

Lη Laplace functional of a random measure η

d
=,

d
→ equality (resp. convergence) in distribution
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