The Economics and Uncertainties of Nuclear Power

Is nuclear power a thing of the past or a technology for the future? Has it become too expensive and dangerous, or is it still competitive and sufficiently safe? Should emerging countries invest in it? Can we trust calculations of the probability of a major nuclear accident? In the face of divergent claims and contradictory facts, this book provides an in-depth and balanced economic analysis of the main controversies surrounding nuclear power. Without taking sides, it helps readers gain a better understanding of the uncertainties surrounding the costs, hazards, regulation and politics of nuclear power. Written several years on from the Fukushima Daiichi nuclear disaster of 2011, this is an important resource for students, researchers, energy professionals and concerned citizens wanting to engage with the continuing debate on the future of nuclear power and its place in international energy policy.

François Lévêque is Professor of Economics at Mines ParisTech and a part-time professor at the Robert Schuman Centre for Advanced Studies (European University Institute). He has advised many international bodies on energy policy and the economics of regulation, including the International Energy Agency, the OECD and the European Commission.
The Economics and Uncertainties of Nuclear Power

FRANÇOIS LÉVÊQUE
Contents

List of abbreviations page viii

Introduction ... 1

Part I Estimating the costs of nuclear power: points of reference, sources of uncertainty 7

1 Adding up costs 9
 The notion of cost 10
 Social, external and private costs 12
 External effects relating to independence and security 13
 The price of carbon 16
 Decommissioning and waste: setting the right discount rate 23
 Liability in the event of accident 34
 Technical and financial production costs 36
 Adding up the costs: the levelized cost method 39

2 The curse of rising costs 43
 The rising costs of nuclear power 44
 International comparisons 49
 Is there no limit to escalating costs? 53

3 Nuclear power and its alternatives 64
 The relative competitive advantage of nuclear power over gas or coal 66
 The competitive advantages of nuclear power and renewable energies 72
Contents

Part II The risk of a major nuclear accident: calculation and perception of probabilities 79

4 Calculating risk 81
 Calculating the cost of major accidents 81
 Calculating the frequency of major accidents 86
 Divergence between real-world observation of accidents and their frequency as predicted by the models 91

5 Perceived probabilities and aversion to disaster 102
 Biases in our perception of probabilities 103
 Perception biases working against nuclear power 111

6 The magic of Bayesian analysis 118
 The Bayes–Laplace rule 118
 Are we naturally good at statistics? 121
 Choosing the right prior probability 123
 Predicting the probability of the next event 125
 What is the global probability of a core melt tomorrow? 132

Part III Safety regulation: an analysis of the American, French and Japanese cases 139

7 Does nuclear safety need to be regulated? 141
 Inadequate private incentives 142
 Civil liability 147
 Civil liability for nuclear damage, in practice 149
 A subsidy in disguise? 151

8 The basic rules of regulation 157
 An engineer’s view of safety regulation 157
 Japanese regulation, an example to avoid 160
 The Japanese regulator is a captive to industry 166

9 What goal should be set for safety and how is it to be attained? 172
 Technology versus performance-based standards in the United States 174
Contents • vii

Choosing a goal for overall safety: words and figures 179
A French approach in complete contrast to the American model 186
Regulator and regulated: enemies or peers? 193
Pros and cons of American and French regulation 198

Part IV National policies and international governance 207

10 Adopting nuclear power 211
 Atoms for peace 212
 Pioneers and followers 216
 Aspiring nuclear powers 222

11 Nuclear exit 226
 German hesitation over a swift or gradual exit 226
 In France early plant closure and nuclear cutbacks 235

12 Supranational governance: learning from Europe 244
 Why is the national level not sufficient? 244
 European safety standards 247
 Europe’s patchwork of liability 251
 Coexistence fraught by conflicting views on nuclear power 256

13 International governance to combat proliferation: politics and trade 265
 The IAEA and the NPT: strengths and weaknesses 266
 Nuclear trade 269
 Which model: the armament industry, or oil and gas supplies and services? 273
 Export controls 282

Conclusion 296

Notes 302
Index 328
Abbreviations

ANRE Agency for Natural Resources and Energy (Japan)
ASN Autorité de Sûreté Nucléaire
CEA Commissariat à l'Energie Atomique
EDF Electricité de France
Enreg European Nuclear Safety Regulation Group
EPR European Pressurized Reactor
GDP Gross Domestic Product
IAEA International Atomic Energy Agency
INES International Nuclear Event Scale
INPO Institute of Nuclear Power Operations
IRRS International Regulatory Review Service
IRSN Institut de Radioprotection et de Sûreté Nucléaire
JNES Japan Nuclear Energy Safety Organization
MIT Massachusetts Institute of Technology
NPT Treaty on the Non-Proliferation of Nuclear Weapons
NRC Nuclear Regulatory Commission
NSC Nuclear Safety Commission (Japan)
NSG Nuclear Suppliers Group
OECD Organisation for Economic Cooperation and Development
UAE United Arab Emirates