
Chapter 1

What is functional programming?

In a nutshell:

• Functional programming is a method of program construction that emphasises
functions and their application rather than commands and their execution.

• Functional programming uses simple mathematical notation that allows prob-
lems to be described clearly and concisely.

• Functional programming has a simple mathematical basis that supports equa-
tional reasoning about the properties of programs.

Our aim in this book is to illustrate these three key points, using a specific func-
tional language called Haskell.

1.1 Functions and types

We will use the Haskell notation

f :: X -> Y

to assert that f is a function taking arguments of type X and returning results of
type Y. For example,

sin :: Float -> Float

age :: Person -> Int

add :: (Integer,Integer) -> Integer

logBase :: Float -> (Float -> Float)

Float is the type of floating-point numbers, things like 3.14159, and Int is the
type of limited-precision integers, integers n that lie in a restricted range such as

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-08720-0 - Thinking Functionally with Haskell
Richard Bird
Excerpt
More information

http://www.cambridge.org/9781107087200
http://www.cambridge.org
http://www.cambridge.org


2 What is functional programming?

−229 ≤ n < 229. The restriction is lifted with the type Integer, which is the type
of unlimited-precision integers. As we will see in Chapter 3, numbers in Haskell
come in many flavours.

In mathematics one usually writes f (x) to denote the application of the function
f to the argument x. But we also write, for example, sinθ rather than sin(θ). In
Haskell we can always write f x for the application of f to the argument x. The
operation of application can be denoted using a space. If there are no parentheses
the space is necessary to avoid confusion with multi-letter names: latex is a name
but late x denotes the application of a function late to an argument x.

As examples, sin 3.14 or sin (3.14) or sin(3.14) are three legitimate ways
of writing the application of the function sin to the argument 3.14.

Similarly, logBase 2 10 or (logBase 2) 10 or (logBase 2)(10) are all le-
gitimate ways of writing the logarithm to base 2 of the number 10. But the expres-
sion logBase (2 10) is incorrect. Parentheses are needed in writing add (3,4)

for the sum of 3 and 4 because the argument of add is declared above as a pair of
integers and pairs are expressed with parentheses and commas.

Look again at the type of logBase. It takes a floating point number as argument,
and returns a function as result. At first sight that might seem strange, but at second
sight it shouldn’t: the mathematical functions log2 and loge are exactly what is
provided by logBase 2 and logBase e.

In mathematics one can encounter expressions like logsinx. To the mathematician
that means log(sinx), since the alternative (logsin) x doesn’t make sense. But in
Haskell one has to say what one means, and one has to write log (sin x) because
log sin x is read by Haskell as (log sin) x. Functional application in Haskell
associates to the left in expressions and also has the highest binding power. (By
the way, log is the Haskell abbreviation for logBase e.)

Here is another example. In trigonometry one can write

sin2θ = 2sinθ cosθ .

In Haskell one has to write

sin (2*theta) = 2 * sin theta * cos theta

Not only do we have to make the multiplications explicit, we also have to put in
parentheses to say exactly what we mean. We could have added a couple more and
written

sin (2*theta) = 2 * (sin theta) * (cos theta)

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-08720-0 - Thinking Functionally with Haskell
Richard Bird
Excerpt
More information

http://www.cambridge.org/9781107087200
http://www.cambridge.org
http://www.cambridge.org


1.2 Functional composition 3

but the additional parentheses are not necessary because functional application
binds tighter than multiplication.

1.2 Functional composition

Suppose f :: Y -> Z and g :: X -> Y are two given functions. We can com-
bine them into a new function

f . g :: X -> Z

that first applies g to an argument of type X, giving a result of type Y, and then
applies f to this result, giving a final result of type Z. We always say that functions
take arguments and return results. In fact we have

(f . g) x = f (g x)

The order of composition is from right to left because we write functions to the
left of the arguments to which they are applied. In English we write ‘green pig’
and interpret adjectives such as ‘green’ as functions taking noun phrases to noun
phrases. Of course, in French . . .

1.3 Example: common words

Let us illustrate the importance of functional composition by solving a problem.
What are the 100 most common words in War and Peace? What are the 50 most
common words in Love’s Labours Lost? We will write a functional program to
find out. Well, perhaps we are not yet ready for a complete program, but we can
construct enough of one to capture the essential spirit of functional programming.

What is given? Answer: a text, which is a list of characters, containing visible char-
acters like 'B' and ',', and blank characters like spaces and newlines (' ' and
'\n'). Note that individual characters are denoted using single quotes. Thus 'f'
is a character, while f is a name. The Haskell type Char is the type of charac-
ters, and the type of lists whose elements are of type Char is denoted by [Char].
This notation is not special to characters, so [Int] denotes a list of integers, and
[Float -> Float] a list of functions.

What is wanted as output? Answer: something like

the: 154

of: 50

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-08720-0 - Thinking Functionally with Haskell
Richard Bird
Excerpt
More information

http://www.cambridge.org/9781107087200
http://www.cambridge.org
http://www.cambridge.org


4 What is functional programming?

a: 18

and: 12

in: 11

This display is also a list of characters, in fact it is the list

" the: 154\n of: 50\n a: 18\n and: 12\n in: 11\n"

Lists of characters are denoted using double quotes. More on this in the exercises.

So we want to design a function, commonWords say, with type

commonWords :: Int -> [Char] -> [Char]

The function commonWords n takes a list of characters and returns a list of the
n most common words in the list as a string (another name for a list of charac-
ters) in the form described above. The type of commonWords is written without
parentheses, though we can put them in:

commonWords :: Int -> ([Char] -> [Char])

Whenever two -> signs are adjacent in a type, the order of association is from right
to left, exactly the opposite convention of functional application. So A -> B -> C

means A -> (B -> C). If you want to describe the type (A -> B) -> C you
have to put in the parentheses. More on this in the next chapter.

Having understood precisely what is given and what is wanted, different people
come up with different ways of solving the problem, and express different worries
about various parts of the problem. For example, what is a ‘word’ and how do you
convert a list of characters into a list of words? Are the words "Hello", "hello"
and "Hello!" distinct words or the same word? How do you count words? Do
you count all the words or just the most common ones? And so on. Some find these
details daunting and overwhelming. Most seem to agree that at some intermediate
point in the computation we have to come up with a list of words and their frequen-
cies, but how do we get from there to the final destination? Do we go through the
list n times, extracting the word with the next highest frequency at each pass, or is
there something better?

Let’s start with what a word is, and just assert that a word is a maximal sequence
of characters not containing spaces or newline characters. That allows words like
"Hello!", or "3*4" or "Thelma&Louise" but never mind. In a text a word is
identified by being surrounded by blank characters, so "Thelma and Louise"

contains three words.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-08720-0 - Thinking Functionally with Haskell
Richard Bird
Excerpt
More information

http://www.cambridge.org/9781107087200
http://www.cambridge.org
http://www.cambridge.org


1.3 Example: common words 5

We are not going to worry about how to split a text up into a list of its component
words. Instead we just assume the existence of a function

words :: [Char] -> [[Char]]

that does the job. Types like [[Char]] can be difficult to comprehend, but in
Haskell we can always introduce type synonyms:

type Text = [Char]

type Word = [Char]

So now we have words :: Text -> [Word], which is much easier on the brain.
Of course, a text is different from a word in that the former can contain blank
characters and the latter cannot, but type synonyms in Haskell do not support such
subtle distinctions. In fact, words is a library function in Haskell, so we don’t have
to define it ourselves.

There is still the issue of whether "The" and "the" denote the same or different
words. They really should be the same word, and one way of achieving this is to
convert all the letters in the text to lowercase, leaving everything else unchanged.
To this end, we need a function toLower :: Char -> Char that converts upper-
case letters to lowercase and leaves everything else unchanged. In order to apply
this function to every character in the text we need a general function

map :: (a -> b) -> [a] -> [b]

such that map f applied to a list applies f to every element of the list. So, convert-
ing everything to lowercase is done by the function

map toLower :: Text -> Text

Good. At this point we have words . map toLower as the function which con-
verts a text into a list of words in lowercase. The next task is to count the number
of occurrences of each word. We could go through the list of words, checking to
see whether the next word is new or has been seen before, and either starting a new
count for a new word or incrementing the count for an existing word. But there is
a conceptually simpler method, namely to sort the list of words into alphabetical
order, thereby bringing all duplicated words together in the list. Humans would not
do it this way, but the idea of sorting a list to make information available is proba-
bly the single most important algorithmic idea in computing. So, let us assume the
existence of a function

sortWords :: [Word] -> [Word]

that sorts the list of words into alphabetical order. For example,

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-08720-0 - Thinking Functionally with Haskell
Richard Bird
Excerpt
More information

http://www.cambridge.org/9781107087200
http://www.cambridge.org
http://www.cambridge.org


6 What is functional programming?

sortWords ["to","be","or","not","to","be"]

= ["be","be","not","or","to","to"]

Now we want to count the runs of adjacent occurrences of each word in the sorted
list. Suppose we have a function

countRuns :: [Word] -> [(Int,Word)]

that counts the words. For example,

countRuns ["be","be","not","or","to","to"]

= [(2,"be"),(1,"not"),(1,"or"),(2,"to")]

The result is a list of words and their counts in alphabetical order of the words.

Now comes the key idea: we want the information in the list to be ordered not by
word, but by decreasing order of count. Rather than thinking of something more
clever, we see that this is just another version of sorting. As we said above, sorting
is a really useful method in programming. So suppose we have a function

sortRuns :: [(Int,Word)] -> [(Int,Word)]

that sorts the list of runs into descending order of count (the first component of
each element). For example,

sortRuns [(2,"be"),(1,"not"),(1,"or"),(2,"to")]

= [(2,"be"),(2,"to"),(1,"not"),(1,"or")]

The next step is simply to take the first n elements of the result. For this we need a
function

take :: Int -> [a] -> [a]

so that take n takes the first n elements of a list of things. As far as take is
concerned it doesn’t matter what a ‘thing’ is, which is why there is an a in the type
signature rather than (Int,Word). We will explain this idea in the next chapter.

The final steps are just tidying up. We first need to convert each element into a string
so that, for example, (2,"be") is replaced by "be 2\n". Call this function

showRun :: (Int,Word) -> String

The type String is a predeclared Haskell type synonym for [Char]. That means

map showRun :: [(Int,Word)] -> [String]

is a function that converts a list of runs into a list of strings.

The final step is to use a function

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-08720-0 - Thinking Functionally with Haskell
Richard Bird
Excerpt
More information

http://www.cambridge.org/9781107087200
http://www.cambridge.org
http://www.cambridge.org


1.4 Example: numbers into words 7

concat :: [[a]] -> [a]

that concatenates a list of lists of things together. Again, it doesn’t matter what the
‘thing’ is as far as concatenation is concerned, which is why there is an a in the
type signature.

Now we can define

commonWords :: Int -> Text -> String

commonWords n = concat . map showRun . take n .

sortRuns . countRuns . sortWords .

words . map toLower

The definition of commonWords is given as a pipeline of eight component functions
glued together by functional composition. Not every problem can be decomposed
into component tasks in quite such a straightforward manner, but when it can, the
resulting program is simple, attractive and effective.

Notice how the process of decomposing the problem was governed by the declared
types of the subsidiary functions. Lesson Two (Lesson One being the importance
of functional composition) is that deciding on the type of a function is the very first
step in finding a suitable definition of the function.

We said above that we were going to write a program for the common words prob-
lem. What we actually did was to write a functional definition of commonWords,
using subsidiary definitions that we either can construct ourselves or else import
from a suitable Haskell library. A list of definitions is called a script, so what we
constructed was a script. The order in which the functions are presented in a script
is not important. We could place the definition of commonWords first, and then de-
fine the subsidiary functions, or else define all these functions first, and end up with
the definition of the main function of interest. In other words we can tell the story
of the script in any order we choose. We will see how to compute with scripts later
on.

1.4 Example: numbers into words

Here is another example, one for which we will provide a complete solution. The
example demonstrates another fundamental aspect of problem solving, namely that
a good way to solve a tricky problem is to first simplify the problem and then see
how to solve the simpler problem.

Sometimes we need to write numbers as words. For instance

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-08720-0 - Thinking Functionally with Haskell
Richard Bird
Excerpt
More information

http://www.cambridge.org/9781107087200
http://www.cambridge.org
http://www.cambridge.org


8 What is functional programming?

convert 308000 = "three hundred and eight thousand"

convert 369027 = "three hundred and sixty-nine thousand and

twenty-seven"

convert 369401 = "three hundred and sixty-nine thousand

four hundred and one"

Our aim is to design a function

convert :: Int -> String

that, given a nonnegative number less than one million, returns a string that repre-
sents the number in words. As we said above, String is a predeclared type syn-
onym in Haskell for [Char].

We will need the names of the component numbers. One way is to give these as
three lists of strings:

> units, teens, tens :: [String]

> units = ["zero","one","two","three","four","five",

> "six","seven","eight","nine"]

> teens = ["ten","eleven","twelve","thirteen","fourteen",

> "fifteen","sixteen","seventeen","eighteen",

> "nineteen"]

> tens = ["twenty","thirty","forty","fifty","sixty",

> "seventy","eighty","ninety"]

Oh, what is the > character doing at the beginning of each line above? The answer
is that, in a script, it indicates a line of Haskell code, not a line of comment. In
Haskell, a file ending with the suffix .lhs is called a Literate Haskell Script and
the convention is that every line in such a script is interpreted as a comment unless
it begins with a > sign, when it is interpreted as a line of program. Program lines are
not allowed next to comments, so there has to be at least one blank line separating
the two. In fact, the whole chapter you are now reading forms a legitimate .lhs file,
one that can be loaded into a Haskell system and interacted with. We won’t carry
on with this convention in subsequent chapters (apart from anything else, it would
force us to use different names for each version of a function that we may want to
define) but the present chapter does illustrate literate programming in which we
can present and discuss the definitions of functions in any order we wish.

Returning to the task in hand, a good way to tackle tricky problems is to solve
a simpler problem first. The simplest version of our problem is when the given
number n contains only one digit, so 0 ≤ n < 10. Let convert1 deal with this
version. We can immediately define

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-08720-0 - Thinking Functionally with Haskell
Richard Bird
Excerpt
More information

http://www.cambridge.org/9781107087200
http://www.cambridge.org
http://www.cambridge.org


1.4 Example: numbers into words 9

> convert1 :: Int -> String

> convert1 n = units!!n

This definition uses the list-indexing operation (!!). Given a list xs and an index
n, the expression xs!!n returns the element of xs at position n, counting from 0.
In particular, units!!0 = "zero". And, yes, units!!10 is undefined because
units contains just ten elements, indexed from 0 to 9. In general, the functions we
define in a script are partial functions that may not return well-defined results for
each argument.

The next simplest version of the problem is when the number n has up to two digits,
so 0 ≤ n < 100. Let convert2 deal with this case. We will need to know what the
digits are, so we first define

> digits2 :: Int -> (Int,Int)

> digits2 n = (div n 10, mod n 10)

The number div n k is the whole number of times k divides into n, and mod n k

is the remainder. We can also write

digits2 n = (n `div` 10, n `mod` 10)

The operators `div` and `mod` are infix versions of div and mod, that is, they
come between their two arguments rather than before them. This device is useful
for improving readability. For instance a mathematician would write x div y and
x mod y for these expressions. Note that the back-quote symbol ` is different from
the single quote symbol ' used for describing individual characters.

Now we can define

> convert2 :: Int -> String

> convert2 = combine2 . digits2

The definition of combine2 uses the Haskell syntax for guarded equations:

> combine2 :: (Int,Int) -> String

> combine2 (t,u)

> | t==0 = units!!u

> | t==1 = teens!!u

> | 2<=t && u==0 = tens!!(t-2)

> | 2<=t && u/=0 = tens!!(t-2) ++ "-" ++ units!!u

To understand this code you need to know that the Haskell symbols for equality
and comparison tests are as follows:

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-08720-0 - Thinking Functionally with Haskell
Richard Bird
Excerpt
More information

http://www.cambridge.org/9781107087200
http://www.cambridge.org
http://www.cambridge.org


10 What is functional programming?

== (equals to)
/= (not equals to)
<= (less than or equal to)

These functions have well-defined types that we will give later on.

You also need to know that the conjunction of two tests is denoted by &&. Thus
a && b returns the boolean value True if both a and b do, and False otherwise.
In fact

(&&) :: Bool -> Bool -> Bool

The type Bool will be described in more detail in the following chapter.

Finally, (++) denotes the operation of concatenating two lists. It doesn’t matter
what the type of the list elements is, so

(++) :: [a] -> [a] -> [a]

For example, in the equation

[sin,cos] ++ [tan] = [sin,cos,tan]

we are concatenating two lists of functions (each of type Float -> Float), while
in

"sin cos" ++ " tan" = "sin cos tan"

we are concatenating two lists of characters.

The definition of combine2 is arrived at by carefully considering all the possible
cases that can arise. A little reflection shows that there are three main cases, namely
when the tens part t is 0, 1 or greater than 1. In the first two cases we can give the
answer immediately, but the third case has to be divided into two subcases, namely
when the units part u is 0 or not 0. The order in which we write the cases, that is, the
order of the individual guarded equations, is unimportant as the guards are disjoint
from one another (that is, no two guards can be true) and together they cover all
cases.

We could also have written

combine2 :: (Int,Int) -> String

combine2 (t,u)

| t==0 = units!!u

| t==1 = teens!!u

| u==0 = tens!!(t-2)

| otherwise = tens!!(t-2) ++ "-" ++ units!!u

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-08720-0 - Thinking Functionally with Haskell
Richard Bird
Excerpt
More information

http://www.cambridge.org/9781107087200
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9781107087200: 


