Thinking About Human Memory

Thinking About Human Memory provides a novel analytical approach to understanding memory that considers the goals of the memory task, the cues and information available, the opportunity to learn, and interference from irrelevant information (noise). Each of five chapters describing this approach introduces historical ideas and demonstrates how current thinking both differs from and is derived from them. These chapters also contain analyses of current problems designed to demonstrate the power of the approach. In a subsequent chapter, the authors discuss how memory is controlled by the environment, by others, and by ourselves, and then apply their insights to the problem solving of children, our hominin ancestors, and scrub jays. Finally, the questions of how to define episodic memory and how to investigate phylogenetic and developmental changes in memory are addressed. This book will appeal to memory researchers, including applied researchers, and advanced students.

MICHAEL S. HUMPHREYS is Professor Emeritus in the School of Psychology at the University of Queensland, Australia.

KERRY A. CHALMERS is Senior Lecturer in the School of Psychology at the University of Newcastle, Australia.
Thinking About Human Memory

Michael S. Humphreys
School of Psychology, The University of Queensland, Australia

Kerry A. Chalmers
School of Psychology, University of Newcastle, Australia
Contents

List of figures, tables, and box \hspace{1cm} page vi

1. Overview of how to analyze memory tasks \hspace{1cm} 1
2. Analyzing the goals of a task \hspace{1cm} 10
3. The importance of thinking about cues and targets \hspace{1cm} 14
4. Theoretical analyses involving the use of information and its complexity \hspace{1cm} 47
5. Opportunity for learning \hspace{1cm} 79
6. The discrimination problems posed by different memory tasks \hspace{1cm} 119
7. Controlling human memory \hspace{1cm} 143
8. Episodic memory \hspace{1cm} 164
9. Conclusions \hspace{1cm} 195

References \hspace{1cm} 200

Index \hspace{1cm} 224
List of Figures, Tables, and Box

Figures

3.1 Response times to nontarget trials (task interference) as a function of memory instructions (Remember vs. Forget) and test instructions (Respond All vs. Respond List 2) in Experiment 1. Error bars represent standard errors. From “Control of access to memory: The use of task interference as a behavioral probe” by S. Loft, M. S. Humphreys, and S. J. Whitney, 2008, Journal of Memory and Language, 58, 465–479. Copyright 2008 by Elsevier.

5.1 Perceptual stimuli that incorporate two stimuli as a unitized shape (left-hand side) versus as two separate features (right-hand side). From “A reformulation of the problems of associations” by S. E. Asch, 1969, American Psychologist, 24, 92–102. Copyright 1969 by American Psychological Association.

6.1 The distribution of evidence assumed by signal detection theory.

8.1 Schematic map of the normal route home (dashed lines) and the alternate route taken during the roadwork construction period (dotted lines).

Tables

3.1 Mean rating for words presented in synonym and passage tasks, synonym task alone, passage task alone, and in neither the synonym nor the passage task. The three between-subject conditions were whether participants were asked to recognize the words from the passage task, recognize the words from the synonym task, or to rate the words for their frequency in the language.

3.2 Example stimuli used in Humphreys, Murray, and Koh (2014, Experiment 2) along with examples of switch and no-switch trials.

3.3 Results from Roediger, Weldon, Stagler, and Riegler (1992, Experiment 1). Participants studied words or pictures and were either cued with word fragments (generally a single completion possible) or with word stems (multiple completions possible). In addition, half of the participants were given implicit recall instructions and half were given explicit recall instructions.

3.4 Results from Humphreys, Tehan, O'Shea, and Bolland (2000). The observed and predicted probabilities of cued recall and free association as a function of whether the two targets subsumed under the cue are similar or less similar.

4.1 Sample size (n), hit rates for the individual words within intact and rearranged pairs, and the double miss rates for intact and rearranged pairs. In all experiments participants are instructed to indicate for each word whether it is old or new.

4.2 Average number of errors made on pairs with an A term and pairs with an E term (not including pair AE).

4.3 Hit rate (HR) and false alarm rate (FAR) in rearranged and mixed pairs, and double miss rate for the pair-bias and item-bias.
conditions of Bain and Humphreys (1988). The results have been collapsed over Experiments 3a, 3b, and 3c.

4.4 Hit rate (HR) for once-presented items and false alarm rate (FAR) for new items as a function of the presentation frequency of the paired item (5, 1, or 0) from Experiments 1 and 2 of Buchler, Light, and Reder (2008).

4.5 An example of an event set (Grandparents’ House) including elements, components, connectives, and possible event component combinations.

4.6 Event components presented at study for each experimental condition.

5.1 Hit and false alarm rates as a function of type of item (pronounced, unpronounced, or new) and type of design (mixed list, blocked, or between-subjects) from Bodner, Taikh, and Fawcett (2014).

5.2 Examples of the relationships between items presented for the priming task and the test items on the recognition test. The names for the priming conditions refer to the relationship between the prime and the target and the names for the recognition conditions refer to the word that was tested for recognition. The prime-associate-foil triples used to construct these examples are doctor-nurse-purse, soil-dirt-dart, length-width-witch, office-work-word, and chair-table-fable.

5.3 Hit rate (HR), false alarm rate (FAR), and d’ as a function of Experiment (5A or 5B) and test context (Same old, Different old, and New) from Hockley (2008).

5.4 Probability of recognizing an item studied as a single as a function of whether it was tested as a single or in a pair (adapted from Thomson, 1972).

5.5 A comparison of the sequence of study and test events that occurred in a study of retrieval practice and a study of retrieval-induced forgetting. The materials used to illustrate the conditions come from Grimaldi and Karpicke (2012). Note that at Time 1 in the constrained retrieval condition and at Time 2 in the competitive retrieval practice condition, the participants are supplied with a related word as a cue plus the initial letters of the target. They are expected to produce a word that is related to the cue that starts with those initial letters. Note also that instead of studying the cue–target pair at Time 2, Anderson, Bjork, and Bjork (2000) had participants generate the cue to the target and the initial letters of the cue.
List of figures, tables, and box ix

6.1 Proportion of items judged old in Experiments 1 and 2 from Dodson and Schacter (2001). 141
7.1 Single item recognition for right pair member ($N = 29$). 147

Box

3.1 Examples of stimulus materials used in Humphreys, Cornwell, McAlister, Kelly, Quinn, and Murray (2010). 44