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Introduction

The traditional formulation of quantum field theory—encoded in its very name—is

built on the two pillars of locality and unitarity [2]. The standard apparatus of

Lagrangians and path integrals allows us to make these two fundamental principles

manifest. This approach, however, requires the introduction of a large amount

of unphysical redundancy in our description of physical processes. Even for

the simplest case of scalar field theories, there is the freedom to perform field

redefinitions. Starting with massless particles of spin 1 or higher, we are forced to

introduce even larger, gauge redundancies [2].

Over the past few decades, there has been a growing realization that these

redundancies hide amazing physical and mathematical structures lurking within

the heart of quantum field theory. This has been seen dramatically at strong

coupling in gauge/gauge (see, e.g. [3–5]) and gauge/gravity dualities [6]. The

past decade has uncovered further remarkable new structures in field theory

even at weak coupling, seen in the properties of scattering amplitudes in

gauge theories and gravity (for reviews, see [7–12]). The study of scattering

amplitudes is fundamental to our understanding of field theory, and fueled its early

development in the hands of Feynman, Dyson, and Schwinger among others. It is

therefore surprising to see that even here, by committing so strongly to particular,

gauge-redundant descriptions of the physics, the usual formalism is completely

blind to astonishingly simple and beautiful properties of the gauge-invariant

physical observables of the theory.

Many of the recent developments have been driven by an intensive exploration

of N = 4 supersymmetric Yang–Mills (SYM) in the planar limit [12, 13]. The

all-loop integrand for scattering amplitudes in this theory can be determined by

a generalization of the BCFW recursion relations [14], in a way that is closely

tied to remarkable new structures in algebraic geometry, associated with contour

integrals over the Grassmannian G(k,n) [15–18]. This makes both the conformal

and long-hidden dual conformal invariance of the theory (which together close

into the infinite-dimensional Yangian symmetry) completely manifest [19]. It
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2 Introduction

is remarkable that a single function of external kinematical variables can be

interpreted as a scattering amplitude in one space-time, and as a Wilson loop in

another (for a review, see [12]). Each of these descriptions makes a commitment

to locality in its own space-time, making it impossible to see the dual picture. By

contrast, the Grassmannian picture makes no mention of locality or unitarity, and

does not commit to any gauge-redundant description of the physics, allowing it to

manifest all the symmetries of the theory.

There has also been extraordinary progress in determining the amplitude itself

beyond the integrand, using the technology of symbols of transcendental functions

to powerfully constrain and control the polylogarithms occurring in the final results

[20, 21]. While a global picture is still missing, a huge amount of data has been

generated. The symbol for all 2-loop MHV amplitudes has been determined [22]

(see also [23]), and a handful of 2-loop NMHV and 3-loop MHV symbols have

been found [24–26]. Remarkable strategies have also been presented to bootstrap

amplitudes to very high loop orders [27–31]. Many of these ideas have a strong

resonance with the explosion of progress in the last decade using integrability to

find exact results in planar N = 4, starting with the spectacular solution of the

spectral problem for anomalous dimensions [13, 32].

All of these developments have made it completely clear that there are

powerful new mathematical structures underlying the extraordinary properties of

scattering amplitudes in gauge theories. If history is any guide, formulating and

understanding the physics in a way that makes the symmetries manifest should

play a central role in the story. The Grassmannian picture does this, but up to this

point there has been little understanding as to why this formulation exists, exactly

how it works, or where it comes from physically. Our primary goal in this note is

to resolve this unsatisfactory state of affairs.

We will derive the connection between scattering amplitudes and the Grass-

mannian, starting physically from first principles. This will lead us into direct

contact with several beautiful and active areas of current research in mathematics

[33–42]. The past few decades have seen vigorous interactions between physics

and mathematics in a wide variety of areas, but what is going on here involves

new areas of mathematics that have only very recently played any role in physics,

involving simple but deep ideas ranging from combinatorics to algebraic geometry.

It is both startling and exciting that such elementary mathematical notions are

found at the heart of the physics of scattering amplitudes.

This new way of thinking about scattering amplitudes involves many novel

physical and mathematical ideas. Our presentation will be systematic, and we

have endeavored to make it self contained and completely accessible to physicists.

While we will discuss a number of mathematical results—some of them new—we

will usually be content with the physicist’s level of rigor. While the essential ideas

here are all very simple, they are tightly interlocking, and range over a wide variety
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Introduction 3

of areas—most of which are unfamiliar to most physicists. Thus, before jumping

into the detailed exposition, as a guide to the reader we end this introductory

chapter by giving a roadmap of the logical structure and content of the book.

In Chapter 2, we introduce the central physical idea motivating our work,

which is to focus on on-shell diagrams, obtained by gluing together fundamental

3-particle amplitudes and integrating over the on-shell phase space of internal

particles. These objects are of central importance to the understanding scattering

amplitudes. We will see that scattering amplitudes in planar N = 4—to all loop

orders—can be represented directly in terms of on-shell processes. In this picture,

“virtual particles” make no appearance at all. We should emphasize that we are not

merely using on-shell information to determine scattering amplitudes, but rather

seeing that the amplitudes can be directly computed in terms of fully on-shell

processes. The off-shell, virtual particles familiar from Feynman diagrams are

replaced by internal, on-shell particles (with generally complex momenta).

In our study of on-shell diagrams, we will see that different diagrams related

by certain elementary moves can be physically equivalent, leading to the natural

question of how to invariantly characterize their physical content. Remarkably,

the invariant content of on-shell diagrams turns out to be characterized by

combinatorial data. We discuss this in detail in Chapter 3 where we show how

a long-known and beautiful connection between permutations and scattering

amplitudes in integrable (1+1)-dimensional theories generalizes to more realistic

theories in (3 + 1) dimensions.

In Chapter 4 we turn to actually calculating on-shell diagrams and find that the

most natural way of carrying out the computations is to associate each diagram

with a certain differential form on an auxiliary Grassmannian. In Chapter 5

and 6 we show how the invariant, combinatorial content of an on-shell diagram is

reflected in the Grassmannian directly. This is described in terms of a surprisingly

simple stratification of the configurations of k-dimensional vectors endowed with

a cyclic ordering, classified by the linear dependencies among consecutive chains

of vectors. For the real Grassmannian, this stratification can be equivalently

described in an amazingly simple and beautiful way as nested ‘boundaries’ of

the positive part of the Grassmannian [33], which is motivated by the theory of

totally positive matrices [34,43,44]. Each on-shell diagram can then be associated

with a particular configuration or “stratum” among the boundaries of the positive

Grassmannian.

In Chapter 7 we make contact with the Grassmannian contour integral of

reference [15], which is now seen as a compact way of representing the natural,

invariant top-form on the positive Grassmannian. This form of the measure allows

us to easily identify the conformal and dual conformal symmetries of the theory,

which are related by a simple mapping of permutations described in Chapter 8. In

Chapter 9, we show that the invariance of scattering amplitudes under the action
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4 Introduction

of the level-one generators of the Yangian has a transparent interpretation: these

generators correspond to the leading nontrivial diffeomorphisms that preserve all

the cells of the positive Grassmannian.

In Chapter 10 we begin a systematic classification of Yangian-invariants and

their relations by first describing a combinatorial test to determine whether an

on-shell diagram has non-vanishing kinematical support (and if it has support, how

many solutions exist). In Chapter 11 a geometric basis is given for all the myriad,

highly nontrivial identities satisfied among Yangian-invariants. This completes

the classification of all Yangian-Invariants together with all their relations. In

Chapter 13, we give a tour of this classification as it emerges through N4MHV.

In Chapter 14 we show that the story for scattering amplitudes in integrable

(1 + 1)-dimensional theories—in particular, the Yang–Baxter relation—can be

understood as a special case of our general results regarding on-shell diagrams. We

further show that scattering amplitudes for the ABJM theory in (2+1) dimensions

[45] can also be computed in terms of a natural specialization of on-shell diagrams:

those associated with the null orthogonal Grassmannian. And we initiate the study

of on-shell diagrams in theories with less (or no) supersymmetry in Chapter 15.

The positive Grassmannian is naturally endowed with a rich mathematical

structure known as a cluster algebra—the original theory of which was developed

in [35] and has since been generalized to the theory of cluster varieties in [37,38].

Remarkably, this structure has made striking appearances in widely disparate

parts of physics in the last decade—from conformal blocks for higher Toda

theories [36, 46], to wall-crossing phenomena [47, 48], to quiver gauge theories

with N = 1 super-conformal symmetry [49–54], to soliton solutions to the KP

equation [55–57]. We briefly review this story in Chapter 16, and also summarize

its various physical manifestations in hopes of stimulating a deeper understanding

for these extremely surprising connections between physics and mathematics.

In Chapter 17 we move beyond the discussion of individual on-shell diagrams

and describe the particular combinations that represent scattering amplitudes.

We present a self-contained direct proof—using on-shell diagrams alone—that

the BCFW construction of the all-loop integrand generates an object with

precisely those singularities dictated by quantum field theory. We then show

that the Grassmannian representation of loop integrands are always given in a

remarkable “dlog” form, which we illustrate using examples of simple one- and

two-loop amplitudes. We discuss the implications of this representation for the

transcendental functions that arise after the loop integrands are integrated.

We conclude our story in Chapter 18 with a discussion of a number of the

outstanding open directions for further research.

www.cambridge.org/9781107086586
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-08658-6 — Grassmannian Geometry of Scattering Amplitudes
Nima Arkani-Hamed , Jacob Bourjaily , Freddy Cachazo ,
Alexander Goncharov , Alexander Postnikov , Jaroslav Trnka
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

2

Introduction to on-shell functions and diagrams

Theoretical explorations in field theory have been greatly advanced by focusing on

interesting classes of observables—from local correlation functions and scattering

amplitudes, to Wilson and ’t Hooft loops, surface operators and line defects, to

partition functions on various manifolds (see, e.g., [58, 59]). The central physical

idea of our work is to extend the notion of “scattering amplitudes” to a broader

class of objects called on-shell functions, which we introduce in this chapter.

2.1 On-shell particles, functions, and kinematical data

On-shell functions, like the S-matrix, depend only on the data describing phys-

ically observable external states. This data consists of the momentum p
¿
a *R

3,1,

mass ma, spin Ãa, helicity ha * {Ãa,Ãa 2 1, . . . ,2Ãa}, and any non-kinematical

quantum numbers qa that describe the external particle indexed by a * {1, . . . ,n}.

The momentum of any observable state satisfies the Einstein relation, p¿p¿ = m2;

such particles are said to be “on the mass-shell” (the hyperboloid p¿p¿ 2 m2 = 0),

or simply on-shell. In this work, we will focus on theories involving massless

particles—those with ma = 0; such particles can only have helicity ha = ±Ãa.

When an external particle is massless, the (2×2)-matrix constructed out of the

Pauli matrices Ã³³̇
¿ ,

p³³̇
a c p¿

a Ã³³̇
¿ =

"
p0

a + p3
a p1

a 2 ip2
a

p1
a + ip2

a p0
a 2 p3

a

"
, (2.1)

(with entries labeled by ³ = 1,2, and ³̇ = 1̇, 2̇) will have a vanishing determinant:

det(p³³̇
a ) = (p0

a)
2 2 (p1

a)
2 2 (p2

a)
2 2 (p3

a)
2 = 0 (c·¿¿p¿

a p¿
a); (2.2)

and so p³³̇
a has rank 1 (or 0). We can make this manifest via the substitution

p³³̇
a c »³

a
�»³̇

a õ “a![a”, (2.3)
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6 Introduction to on-shell functions and diagrams

where »³
a ,�»³̇

a *C
2 are called spinor-helicity variables [60–64]. If the momentum

pa were real, we would have�»a = ±»7
a; but we will often find it useful to allow all

momenta to be complex, and consider »a,�»a to be independent variables.

The rescaling »a "³ ta»a,�»a "³ t21
a

�»a leaves the momentum pa, (2.3), invariant

and represents the action of the little group (for more details, see e.g. [2, 65]).

Upon its complexification, the local Lorentz group becomes SL(2)L×SL(2)R, with

»³ and�»³̇ transforming in the fundamental representations of SL(2)L and SL(2)R,

respectively. Knowing this, we may construct the Lorentz-invariants,

!ab! c det{»a,»b} and [ab] c det{�»a,�»b}, (2.4)

out of which all Lorentz-invariants of the momenta can be constructed—e.g.,

·¿¿ (pa + pb)
¿ (pa + pb)

¿ c (pa + pb)
2 = !ab![ab], (2.5)

for any on-shell, massless four-momenta pa,pb.

The Lorentz-invariant phase space (‘LIPS’) associated with an on-shell particle

is given by the four degrees of freedom of »a,�»a modulo the action of the little

group—a GL(1) redundancy. Thus, the differential form describing an on-shell

particle’s phase space can be written

d3LIPSa c
d2»a d2�»a

vol(GL(1))
, (2.6)

where “1/vol(GL(1))” represents the instruction to eliminate the GL(1) redun-

dancy of the little group, resulting in a three-dimensional form on phase space.

In general, we view all on-shell functions as being decorated with the

Lorentz-invariant phase space measures for each external particle. As such, we

may view them more formally as on-shell (differential) forms on the phase space of

all the external kinematical data. Because of this, we will refer to on-shell functions

interchangeably as on-shell forms throughout this work.

Let us denote the external wave function for particle a with helicity ha = ±Ãa

by ‘|a!ha’ (which should not be confused with the notation ‘a!’ for »a). Under

the action of the little group, »a "³ ta»a,�»a "³ t21
a

�»a, the wave function transforms

according to (see e.g. reference [2]):

|a!ha "³ t22ha
a |a!ha . (2.7)

Because of this, any Lorentz-invariant on-shell function of the external states (e.g.

a scattering amplitude) must transform under the little group accordingly:

f (. . . , ta»a, t21
a

�»a,ha, . . .) = t22ha
a f (. . . ,»a,�»a,ha, . . .). (2.8)

We will see in section 2.3 that this scaling property together with momentum

conservation uniquely fixes the kinematical dependence of the S-matrix for three

massless particles with any helicities (to all loop orders!).

www.cambridge.org/9781107086586
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-08658-6 — Grassmannian Geometry of Scattering Amplitudes
Nima Arkani-Hamed , Jacob Bourjaily , Freddy Cachazo ,
Alexander Goncharov , Alexander Postnikov , Jaroslav Trnka
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

2.1 On-shell particles, functions, and kinematical data 7

Before moving on to the main subject of this chapter, on-shell diagrams, it will

be helpful to establish some useful notational conventions. As we have seen, the

kinematical data describing on-shell particles are specified by a pair of two-vectors

»a,�»a *C
2 for each particle a*{1, . . . ,n}. We will frequently find it convenient to

organize these data collectively into a pair of (2×n) matrices written according to

the following convention:

�
»³

a

�
õ »c

"
»1

1 · · ·»1
n

»2
1 · · ·»2

n

"
c

"
»1

»2

"
c

�
»1 · · ·»n

�
, (2.9)

and similarly for �». That is, ‘»’ collectively denotes all external spinors and

components {»³
a }, ‘»a’ denotes the two-vector of spinor components for the ath

particle, and ‘»³’ denotes the n-vector consisting of each spinor’s ³-component.

Finally, momentum conservation must always be satisfied for the particles

involved in any scattering process. If we conventionally take all the external

momenta to be incoming, then momentum conservation becomes the constraint

·2×2

" n�

a=1

»³
a
�»³̇

a

"
c ·2×2

�
»·�»

�
, (2.10)

where we have introduced “ · ” to denote a summation over external particles. This

will prove a useful convention throughout the rest of this work. Notice also that

because the four-momenta are each written as a (2×2) matrix according to (2.1),

momentum conservation is naturally organized into a (2×2) matrix of constraints.

Whenever a system of constraints is naturally organized into a (k×m) matrix, we

will indicate this by writing “·k×m
�
· · ·

�
” as in (2.10).

We should clarify that, throughout this work, we consider only “holomorphic”

·-functions. These behave very similarly to the traditional “·-functions” of

quantum mechanics, but require no use of a complex norm. Concretely, our

·-functions are defined as residue (or contour) prescriptions according to:�
dz g(z)·

�
f (z)

�
c

�

z7|f (z7)=0

Res

"
g(z)

f (z)
;z7

"
. (2.11)

The following is a simple, illustrative example:�
dz ·

�
f (z)

�
=

�

z7|f (z7)=0

1

f �(z7)
, (2.12)

where f �(z7) denotes the derivative of f with respect to z, evaluated at z7. The reader

should notice that ·-functions defined in this way behave the same way as ordinary

·-functions, except that, in (2.12) for example, no absolute-value sign appears

around the derivative of f . This definition generalizes to the case ·k×m
�
· · ·

�
, which

specifies the contour for a co-dimension (k×m) residue (see e.g. [66]).

Thus, if we re-write the four components of the ·-functions encoding momen-

tum conservation, (2.10), in terms of Lorentz-invariant quantities by contracting
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8 Introduction to on-shell functions and diagrams

with some reference null momenta {»r
�»r,»s

�»s}, we pick-up an ordinary Jacobian

from the change of variables (without any absolute-value signs!):

·2×2
�
»·�»

�
=!rs![rs]·

��

a

!ra![ar]
�
·
��

a

!ra![as]
�
·
��

a

!sa![ar]
�
·
��

a

!sa![as]
�

.

(2.13)

2.2 Scattering amplitudes and their amalgamations

We would like to understand the entire class of physically meaningful functions

describable exclusively in terms of on-shell kinematical data for some number

of external states (without any reference to virtual particles, gauge redundancies,

ghosts, or any of the other unphysical baggage associated with the traditional

approach to quantum field theory).

A particularly important example of this class of functions is the full scattering

amplitude (the “S-matrix”) An(»,�»,h) for n particles with momenta given by

»,�» and with helicities h c
�
h1 · · ·hn

�
. But scattering amplitudes represent only

a small subset of the meaningful gauge-invariant functions that can be constructed

exclusively in terms of on-shell external data. In particular, knowing even a few

scattering amplitudes, we can “amalgamate” them into more complex objects we

call on-shell functions, which can be represented as on-shell diagrams, constructed

out of amplitudes by sewing them together in a natural way.

The most familiar example of an on-shell function built out of scattering

amplitudes, but which is not a scattering amplitude itself, is known as a factori-

zation channel; diagrammatically, we represent a factorization channel as follows

L R

I
(2.14)

A factorization channel is well defined without any reference to any off-shell

degrees of freedom, and corresponds to the particular on-shell function

�

hI

�
d2»I d2�»I

vol(GL(1))
AL(. . . ,»I ,�»I ,hI)AR(»I ,2�»I ,2hI , . . .). (2.15)

(Here, we have left implicit a summation over any non-kinematical quantum

numbers labeling the internal particle.) Notice that in (2.15), integration over

the internal particle’s on-shell phase space is trivial: it is completely localized

by the momentum-conserving ·-functions present in the two amplitudes. Notice,

however, that even after localizing the three-dimensional phase space integral, five

of the eight initial ·-functions remain; these impose the four constraints of overall

momentum conservation, together with the additional constraint
��

a*L pa

�2
= 0.
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2.2 Scattering amplitudes and their amalgamations 9

We can understand how the formula (2.15) follows from locality and unitarity as

follows. Because the internal particle is massless (and on-shell), the two scattering

amplitudes can involve particles separated by arbitrary distances in space and time;

as such, locality dictates that they must be independent, and so the amplitudes

must be multiplied together. And unitarity instructs us to marginalize over any

unobserved states—integrating over each internal particle’s on-shell phase space,

(2.6), and summing over possible helicities (and any other quantum numbers).

This rule can be generalized to define arbitrary graphs built out of on-shell

scattering amplitudes separated by internal (but on-shell) particles. Thus, the

on-shell function associated with a graph � involving an amplitude Av at each

vertex v and any number of internal particles i*I is defined according to

f� c
�

i*I

"�

hi

�
d2»i d2�»i

vol(GL(1))

"�

v

Av, (2.16)

where convention that amplitudes involve only incoming momenta dictates that

two ends of any internal line must involve opposite momenta and helicities.

One important physical characteristic of any on-shell diagram obtained in the

way described above is the number n· of constraints (if any) that are imposed on

the external kinematical data beyond overall momentum conservation. Because

each vertex amplitude imposes momentum conservation, we start with a total 4nV

constraints for a diagram with nV vertices; these constraints always imply overall

momentum conservation, and so 4nV 2 4 of the constraints can contribute to n· .

But we must integrate over each of the nI internal particles’ three dimensional

on-shell phase space; therefore, if as many of these phase space integrals can be

localized as possible, then the number of excess constraints would be given by

n· c 4nV 2 3nI 2 4. (2.17)

When n· = 0, it is possible that all the phase space integrals can be localized

by the ·-functions, resulting in an on-shell diagram that neither imposes any

constraints on the external kinematics, nor leaves us with any remaining integrals

over phase space to perform. When this is the case, the on-shell diagram is

simply a (rational) function of the external kinematical variables; such on-shell

functions have historically been called “leading singularities” in the physics

literature [12,67], for reasons we will discuss momentarily. When n·>0, however,

the resulting on-shell function imposes some number of excess constraints on the

external kinematics; these objects have historically been called “singularities” or

said to have “singular support”. Finally, when n·<0, there are internal phase space

integrations that cannot be localized by the ·-functions, requiring that we specify

a choice of contour for their integration. We will see in section 2.6 that with the

appropriate choice of contours, these on-shell phase space integrations exactly

reproduce the “loop-level” contributions in the Feynman expansion (where, in a
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10 Introduction to on-shell functions and diagrams

Feynman diagram, this integration would be performed over degrees of freedom

associated with the off-shell “loop momenta” of virtual particles).

We have already seen an example of a diagram for which n·>0: the factorization

channel, (2.14). The following is an example of a diagram with n· = 0:

c b

ad

(2.18)

For this diagram, all the internal phase space integrations are localized by

momentum conservation at the vertices; and so, (2.18) involves no internal degrees

of freedom and imposes no additional constraints on the external kinematical data.

Because of this, the diagram (2.18) represents an ordinary (rational) function of

the external momenta (and has nothing directly to do with a “loop” in the sense of

traditional, off-shell perturbation theory).

As mentioned earlier, the diagram (2.18) would have historically been called

a “one-loop leading singularity”; this is because it can be interpreted as a

co-dimension–four residue of the one-loop Feynman integrand—where each

residue constrains an off-shell internal (hence virtual) particle to be put on-shell.

We choose not to use this terminology here, because it subordinates on-shell

functions like (2.18) relative to objects such as Feynman diagrams defined in

terms of unphysical, off-shell degrees of freedom. As emphasized above, all

on-shell diagrams are intrinsically well defined, without any reference to Feynman

diagrams.

2.3 On-shell building blocks: the massless three-particle S-matrix

As we saw in section 2.2, on-shell scattering amplitudes can be “amalgamated”

into more complicated on-shell objects; but we cannot begin to investigate such

objects until we know some scattering amplitudes to feed into the machinery.

In this section, we show that the S-matrix involving three massless particles

(with arbitrary helicities) is uniquely fixed by first principles to all orders of

perturbation theory. Given just these basic amplitudes as building blocks, the

procedure described above immediately leads to an incredible variety of on-shell

diagrams and corresponding functions, defined to all orders of perturbation theory.

Moreover, as we will see in section 2.6, the entire perturbative S-matrix (at least in
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