Contents

Foreword
Preface

Introduction

I Electrochemistry and battery technologies

1 The electrochemical cell
1.1 Definitions
1.2 Cell components
1.2.1 Electrodes
1.2.2 Electrolytes
1.2.3 Separators
1.2.4 Current collectors
1.2.5 Casing
1.3 Cell and battery
1.3.1 Half cells
1.3.2 Full cells: monopolar and bipolar
1.3.3 Full cells: three-dimensional
1.3.4 Battery
1.4 Thermodynamics
1.4.1 Chemical and electrochemical potentials
1.4.2 Cell voltage
1.4.3 Temperature
1.5 Electrode and electrolyte processes
1.5.1 Electrode kinetics
1.5.2 Electrode-electrolyte interfaces
1.5.3 Mass transport
1.5.4 Ion transport
1.5.5 Mass transport in solid states
1.5.6 Electrolyte stability
1.6 Practical cell measures
1.6.1 Cell voltage under load
Contents

1.6.2 Charge and discharge rates 35
1.6.3 Capacity 36
1.6.4 Energy and power 38
1.6.5 Efficiency 40
1.7 Electrochemical analysis methods 41
1.7.1 Galvanostatic and potentiostatic cycling 41
1.7.2 Cyclic voltammetry 42
1.7.3 Electrochemical impedance spectroscopy 43
1.7.4 Reference electrode 46

2 Battery technologies for electric vehicles 47
2.1 Lead-acid batteries 48
2.1.1 Basics 48
2.1.2 Lead-acid concepts 51
2.2 Nickel metal-hydride batteries 52
2.2.1 Basics 53
2.2.2 NiMH battery materials 55
2.3 Lithium batteries 57
2.3.1 Lithium metal 58
2.3.2 Li-ion and Li-ion polymer 59
2.3.3 Lithium-oxygen 59
2.3.4 Lithium-sulphur 60
2.4 Electrochemical double-layer capacitors 62
2.4.1 Capacitor materials 65
2.4.2 High-energy capacitors 65
2.5 Other battery technologies 66
2.5.1 High-temperature molten-salt batteries 66
2.5.2 Nickel zinc batteries 68
2.5.3 Zinc-air batteries 69
2.5.4 Metal-ion batteries 70
2.5.5 Redox flow batteries 72
2.6 Fuel cells 74
2.6.1 Polymer electrolyte membrane fuel cells 75
2.6.2 PEMFC usage 78

II Li-ion battery technology – materials and cell design 81

3 Lithium battery materials 83
3.1 Negative electrode materials 86
3.1.1 The solid electrolyte interphase 87
3.1.2 Metallic lithium 89
3.1.3 Carbons 91
3.1.4 Alloys 96
3.1.5 Oxides 98

3.2 Positive electrode materials 100
3.2.1 Layered materials 102
3.2.2 The cubic spinel LiMn$_2$O$_4$ 105
3.2.3 Olivine LiFePO$_4$ 109
3.2.4 Other materials 111
3.2.5 Mixed electrode concepts 113

3.3 Electrolytes and separators 114
3.3.1 Liquid electrolytes 115
3.3.2 Separators 120
3.3.3 Polymer-based electrolytes 123
3.3.4 Ionic liquids as electrolytes 124

4 Cell design 126
4.1 Composite electrodes 126
4.2 Energy and power-optimised electrodes 129
4.3 Energy and power-optimised cells 130
4.3.1 Cell balancing 130
4.3.2 Energy and power relationship 131
4.3.3 Example: energy and power-optimised cells 132

4.4 Cell format and design 134
4.4.1 Cylindrical cells 134
4.4.2 Prismatic cells 135
4.4.3 Pouch cells 135
4.4.4 Cell safety devices 137

4.5 Production processes 137
4.5.1 Safety and reliability 139

III Battery usage in electric vehicles 141

5 Vehicle requirements and battery design 143
5.1 Vehicle types and requirements 143
5.1.1 Vehicle types 143
5.1.2 Usage conditions 146
5.1.3 Energy and power requirements 147

5.2 Battery design 152
5.2.1 General design criteria 154
5.2.2 Cell selection 156
5.2.3 Additional battery components 163
5.2.4 Design impact on reliability and safety 166
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Battery control and management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.1 Battery management system</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>6.1.1 Charge and discharge control and methods</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>6.1.2 Thermal control and management</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>6.1.3 Battery monitoring</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>6.2 State functions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.2.1 State of charge</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>6.2.2 State of health</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>6.2.3 State of function</td>
<td>189</td>
</tr>
<tr>
<td>7</td>
<td>Battery usage and degradation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.1 Degradation basics and mechanisms</td>
<td>194</td>
</tr>
<tr>
<td></td>
<td>7.1.1 Examples: origins of capacity fade</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>7.1.2 Accelerated degradation</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>7.2 Degradation of Li-ion cells</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.2.1 General degradation categories</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>7.2.2 Degradation of active materials</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>7.2.3 Degradation of electrolytes</td>
<td>209</td>
</tr>
<tr>
<td></td>
<td>7.3 Degradation analysis methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.3.1 Galvanostatic cycling</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>7.3.2 Electrochemical impedance spectroscopy</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>7.3.3 Incremental capacity</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>7.3.4 Differential voltage</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>7.3.5 Half cell</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>7.3.6 Post-mortem</td>
<td>224</td>
</tr>
</tbody>
</table>

Glossary

Further reading

Index