Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18650 cell</td>
<td>134</td>
</tr>
<tr>
<td>3D cell design</td>
<td>13</td>
</tr>
<tr>
<td>A2B7,5</td>
<td>6</td>
</tr>
<tr>
<td>AB2,5</td>
<td>6</td>
</tr>
<tr>
<td>AB5,5</td>
<td>6</td>
</tr>
<tr>
<td>absorbed glass mat battery</td>
<td>52</td>
</tr>
<tr>
<td>active carbon</td>
<td>65</td>
</tr>
<tr>
<td>activation polarisation</td>
<td>33</td>
</tr>
<tr>
<td>fuel cell</td>
<td>75</td>
</tr>
<tr>
<td>active battery balancing</td>
<td>186</td>
</tr>
<tr>
<td>active cooling</td>
<td>164</td>
</tr>
<tr>
<td>active electrode area</td>
<td>63</td>
</tr>
<tr>
<td>active material</td>
<td>8, 230</td>
</tr>
<tr>
<td>additive</td>
<td>230</td>
</tr>
<tr>
<td>additive, 115, 118</td>
<td></td>
</tr>
<tr>
<td>film-forming</td>
<td>120</td>
</tr>
<tr>
<td>flame-retardant</td>
<td>120</td>
</tr>
<tr>
<td>gas-forming</td>
<td>120</td>
</tr>
<tr>
<td>redox-shuttle</td>
<td>119</td>
</tr>
<tr>
<td>SEI forming</td>
<td>119</td>
</tr>
<tr>
<td>shut-down</td>
<td>120</td>
</tr>
<tr>
<td>ageing, 230</td>
<td></td>
</tr>
<tr>
<td>ageing rate, 189</td>
<td></td>
</tr>
<tr>
<td>AGM, 52</td>
<td></td>
</tr>
<tr>
<td>air-cooling</td>
<td>164</td>
</tr>
<tr>
<td>Al current collector</td>
<td>128</td>
</tr>
<tr>
<td>all-electric vehicle</td>
<td>144</td>
</tr>
<tr>
<td>alloy</td>
<td></td>
</tr>
<tr>
<td>negative electrode, 96</td>
<td></td>
</tr>
<tr>
<td>amorphous carbon, 91, 95, 127</td>
<td></td>
</tr>
<tr>
<td>ampere, 230</td>
<td></td>
</tr>
<tr>
<td>ampere hour, 230</td>
<td></td>
</tr>
<tr>
<td>anode, 7, 230</td>
<td></td>
</tr>
<tr>
<td>anodic current</td>
<td>22</td>
</tr>
<tr>
<td>assembly process, 138</td>
<td></td>
</tr>
<tr>
<td>asymmetrical capacitor</td>
<td>65</td>
</tr>
<tr>
<td>available capacity, 230</td>
<td></td>
</tr>
<tr>
<td>β-Al$_2$O$_3$, 67</td>
<td></td>
</tr>
<tr>
<td>band structure, 31</td>
<td></td>
</tr>
<tr>
<td>battery, 14, 230</td>
<td></td>
</tr>
<tr>
<td>battery balancing, 185</td>
<td></td>
</tr>
<tr>
<td>battery degradation</td>
<td>194</td>
</tr>
<tr>
<td>accelerating factors</td>
<td>201</td>
</tr>
<tr>
<td>active materials and electrolytes</td>
<td>212</td>
</tr>
<tr>
<td>analysis methods, 221</td>
<td></td>
</tr>
<tr>
<td>changes in bulk material</td>
<td>210</td>
</tr>
<tr>
<td>current, 206</td>
<td></td>
</tr>
<tr>
<td>electrolytes, 219</td>
<td></td>
</tr>
<tr>
<td>layered oxides, 217</td>
<td></td>
</tr>
<tr>
<td>LiFePO$_4$, 219</td>
<td></td>
</tr>
<tr>
<td>LiMn$_2$O$_4$, 218</td>
<td></td>
</tr>
<tr>
<td>mechanisms, 195</td>
<td></td>
</tr>
<tr>
<td>negative electrode, 212</td>
<td></td>
</tr>
<tr>
<td>positive electrode, 215</td>
<td></td>
</tr>
<tr>
<td>SEI, 213</td>
<td></td>
</tr>
<tr>
<td>separators, 220</td>
<td></td>
</tr>
<tr>
<td>temperature, 202</td>
<td></td>
</tr>
<tr>
<td>voltage, 206</td>
<td></td>
</tr>
<tr>
<td>battery design, 152</td>
<td></td>
</tr>
<tr>
<td>battery durability, 194</td>
<td></td>
</tr>
<tr>
<td>battery electric vehicle, 144</td>
<td></td>
</tr>
<tr>
<td>battery life, 155, 189</td>
<td></td>
</tr>
<tr>
<td>battery management system, 168</td>
<td></td>
</tr>
<tr>
<td>battery models, 183</td>
<td></td>
</tr>
<tr>
<td>empirical, 191</td>
<td></td>
</tr>
<tr>
<td>energy throughput counting</td>
<td>191</td>
</tr>
<tr>
<td>equivalent circuit, 191</td>
<td></td>
</tr>
<tr>
<td>physical, 191</td>
<td></td>
</tr>
<tr>
<td>battery monitoring, 178</td>
<td></td>
</tr>
<tr>
<td>beginning-of-life, 155</td>
<td></td>
</tr>
<tr>
<td>BEV, 144</td>
<td></td>
</tr>
<tr>
<td>binder, 127</td>
<td></td>
</tr>
<tr>
<td>bipolar cell, 12</td>
<td></td>
</tr>
<tr>
<td>bipolar electrode, 230</td>
<td></td>
</tr>
<tr>
<td>bipolar plate, 76</td>
<td></td>
</tr>
<tr>
<td>blocking electrode, 9</td>
<td></td>
</tr>
<tr>
<td>BMS, 168</td>
<td></td>
</tr>
<tr>
<td>BOL, 155</td>
<td></td>
</tr>
<tr>
<td>Butler–Volmer equation, 22</td>
<td></td>
</tr>
<tr>
<td>calendar ageing, 195</td>
<td></td>
</tr>
<tr>
<td>calendar life, 155, 189, 195, 230</td>
<td></td>
</tr>
<tr>
<td>calendering, 138</td>
<td></td>
</tr>
</tbody>
</table>

© in this web service Cambridge University Press www.cambridge.org
capacitance, 63, 230
capacitor, 62, 230
capacity, 36, 230
theoretical, 37
capacity fade, 195
capacity retention, 230
carbon black, 93, 127
cathode, 7, 230
cathodic current, 22
cell, 230
cell balancing, 130
cell casing, 11
cell design, 126, 134
cell format, 134
cell formation, 139
cell production, 137
cell selection, 156
cell voltage, 17
cell-to-cell variations, 157
centralised BMS, 171
charge, 230
charge carrier, 230
charge current, 230
charge current limit, 230
charge separation distance, 63
charge transfer, 22
charge-depleting, 150
charge-sustaining, 150
charge-transfer resistance, 44
charging methods, 171
constant current, 172
constant current–constant voltage, 173
constant voltage, 173
temperature control, 172
voltage control, 172
chemical potential, 16
Chevrel phases, 72
CID, 137
composite electrode, 28, 126, 129
concentration polarisation, 25, 33
fuel cell, 75
constant current charging, 231
constant power discharge rate, 36
constant voltage charging, 231
constant voltage charging method, 173
contaminations, 211
conversion material, 30
conversion oxides, 98
conversion reaction, 30
cooling media, 164
cooling system, 163
core-shell model, 110
cosolvent, 116, 125
coulomb, 231
coulombic efficiency, 40, 231
counter electrode, 46
C-rate, 35, 230
crossover, 78
Cu current collector, 128
current, 22, 231
current collector, 10, 126
corrosion, 214
current counting, 182
current density
fuel cell, 75
current distribution, 128
current interrupt device, 137
cut-off voltage, 21, 35, 231
cycle life, 155, 189, 231
cycling stability, 231
cylindrical cells, 134
degradation mechanisms
chemical, 195
Li-ion cell, 208
mechanical, 195
side reactions, 210
surface film formation, 210
degrees of electrification, 144
dendrites, 90
dept of discharge, 181, 231
desulphation, 50
dielectric constant, 63
differential voltage analysis, 226
diffusion coefficient, 25
diffusion pathway, 29
dimethyl carbonate, 116
discharge current limit, 231
discharge profile, 17
DMC, 116
DOD, 181, 231
double-layer capacitance, 24, 44, 63
double-layer capacitor, 65
drying process, 138
duty cycle, 147
EC, 116
EDLC, 65
efficiency, 231
electric charge, 231
electrical equivalent model, 231
electrical impedance, 44
electrical potential, 16
electrochemical cell, 7–8, 231
electrochemical double-layer, 24
electrochemical double-layer capacitor, 62
electrochemical equilibrium, 16
electrochemical force, 15
electrochemical impedance spectroscopy, 44, 223
electrochemical potential, 16, 231
electrochemical stability window, 32
electrode, 7, 9, 77, 231
electrode fabrication, 137
electrode kinetics, 22
electrode potential, 231
electrolyte, 7, 9, 231
concentration, 25
gel polymer, 123
ionic liquids, 124
Li-ion battery, 114
liquid, 115
polymer, 123
resistance, 44
viscosity, 26
electrolytic cell, 7
electronic protection devices, 165
electronic structure, 30
electrostatic field, 62
electrostatic potential, 16
end-of-life, 155
energy, 38
of capacitor, 62
energy density, 38, 231
energy efficiency, 41
energy management, 152
energy optimised cell, 130
energy optimised electrode, 129
energy throughput, 147
entropy heat, 21
BOL, 155
ethylene carbonate, 116
EV, 144
exchange current, 22
exfoliation, 95, 214
farad, 231
Faraday’s law, 37
fast-charging, 155
fault detection, 170
Fermi level, 30
Fick’s first law, 25
Fick’s second law, 26
film-forming additives, 120
flame-retardant additives, 120
fluorophosphates, 112
fluorosulphates, 112
forced air-cooling, 164
formation reaction, 30
fuel cell, 74, 232
full cell, 12
Galvani potential difference, 16
galvanic cell, 7, 232
galvanostatic cycling, 41, 222
gas diffusion layer, 77
gas formation additives, 120
gas-shift reaction, 79
gel battery, 52
gel polymer electrolyte, 123–4
Gibbs free energy, 15–16, 21
Gibbs phase rule, 17
graphite, 91
half-cell, 11, 227, 232
hard carbons, 96
heating media, 164
heating system, 163
Helmholtz plane, 24
HEV, 145
high-temperature battery, 66
HOMO, 31
hot-spots, 177
hourly rate, 36
Hunter’s disproportional reaction, 108
hybrid capacitor, 65
hybrid electric vehicle, 145
hydrogen, 74
impedance, 232
incremental capacity analysis, 225
inner Helmholtz plane, 24
inorganic composite membrane separator, 122
insertion negative electrode, 98
insertion electrode, 9
insertion material, 29
intercalation, 29
intermetallic alloy, 55
intermetallic materials negative electrode, 97
internal resistance, 33, 232
fuel cell, 75
internal short circuit, 176, 232
ion conductivity, 26–7
ion mobility, 26
ion pairing, 27
ionic liquids, 66, 124
IR drop, 33, 232
irreversible heat generation, 21
Jahn–Teller distortion, 107, 218
Joule heating, 21
KOH, 56
layered oxides, 102
lead dioxide, 48
lead–acid battery, 48
LFP, 109
Li (metal) polymer battery, 83
Li metal battery, 83
Li$_2$FeSiO$_4$, 112
Li$_2$MnO$_3$, 107
Li$_2$MnO$_4$, 105
Index

Li$_2$MSiO$_4$, 112
Li$_4$Ti$_5$O$_12$, 98
Li-air battery, 59
LiAsF$_6$, 117
LiBF$_4$, 117
LiCF$_3$SO$_3$, 117
LiClO$_4$, 117
LiCoO$_2$, 102
LiCoPO$_4$, 111
Li-dendrites, 205
LiFePO$_4$, 109
Li-ion battery, 59, 83
Li-ion capacitor, 65
Li-ion polymer battery, 59, 83
LiMn$_2$O$_4$, 105
LiMnPO$_4$, 111
LiMPO$_4$F, 112
LiMSO$_4$F, 112
LiNi$_{0.8}$Co$_{0.15}$Al$_{0.05}$O$_2$, 104
LiNi$_{1/3}$Mn$_{1/3}$Co$_{1/3}$O$_2$, 104
LiNiO$_2$, 103
Li-oxygen battery, 59
LiFePO$_4$, 117, 220
Li-plating, 93, 205, 211
liquid cooling, 164
liquid electrolyte, 115
Li-rich NMC
Li-rich, 105
Li-Si alloys, 97
Li-sulphur battery, 60
LiTFSI, 117
lithium, 57
lithium batteries, 57
lithium metal battery, 58
lithium-ion battery, 83
Li-triflate, 117
LiVPO$_4$F, 113
Li$_2$M$_2$(XO$_4$)$_3$, 111
LTO, 98
LUMO, 31

many-particle model, 110
mass transport, 24, 28
master–slave BMS, 171
MEA, 77
mechanical stability, 154
Me-ion battery, 70
membrane
fuel cell, 74
membrane electrode assembly, 77
memory effect, 57
metallic lithium
negative electrode, 89
Mg battery, 72
micro-HEV, 145
microporous polymeric membrane separator, 122
mild HEV, 145
modular BMS, 171
molten salts, 67
monopolar cell, 12
multi-layered separator, 122
N/P ratio, 55, 132
Na-ion battery, 70
Na-NiCl$_2$ battery, 67
natural gas, 74
NCA, 104
negative electrode, 7, 232
Li-ion battery, 86
Nernst equation, 17, 49
nickel metal-hydride battery, 52
nickel oxyhydroxide, 53
NiMH, 52
NiOOH, 53, 56
NiZn battery, 68
NMC, 104
nominal voltage, 17, 232
non-active material, 8
non-aqueous solvents, 115
non-blocking electrode, 26
non-woven fabric mat separator, 122
Nyquist plot, 44
OCV, 17, 33, 232
ohmic polarisation, 33
ohmic resistance
fuel cell, 75
open circuit, 44
open circuit voltage, 17, 232
operating temperature range, 202
outer Helmholtz plane, 24
overcharge, 35, 232
overdischarge, 35, 232
overpotential, 22, 232
oxidant, 7, 232
oxidation, 7, 232
oxides
negative electrode, 98
oxygen recombination reaction, 54
P/E ratio, 148
parallel connected capacitors, 64
passive battery balancing, 186
passive cooling, 164
Pb-acid, 48
PbO$_2$, 48
PC, 116
PEM, 77
PEMFC, 75
PEO, 123
Peukert law, 37
Peukert plot
modified, 37
Index

PEV, 144
PHEV, 146
planar electrode, 28
plasticiser, 123
plug-in hybrid electric vehicle, 146
polarisation, 232
polarisation profile, 75
polarity reversal, 55, 232
poly(ethylene oxide), 123
poly(propylene oxide), 123
polyanionic materials, 111
polymer electrolyte, 123
polymer electrolyte membrane, 77
polymer electrolyte membrane fuel cell, 75
polyisulphides, 61
porous electrode, 28
positive electrode, 7, 232
 Li-ion battery, 100
 mixed materials, 113
 positive temperature coefficient, 137
post-mortem analysis, 228
potassium hydroxide, 56
potential, 232
potential difference, 15
potentiostatic cycling, 41
pouch cells, 135
power, 39, 232
power capability, 22
power density, 232
power fade, 195
power optimised cell, 130
power optimised electrode, 129
power-to-energy ratio, 148
PPO, 123
primary cell, 7, 232
prismatic cells, 135
propylene carbonate, 116
pseudo-capacitance, 64
pseudo-capacitor, 65
PTC, 137
pure electric vehicle, 144
Ragone plot, 39, 132
rate capability, 232
rated cell capacity, 35
redox flow battery, 72
redox reaction, 7, 232
redox-shuttle additives, 119
reductant, 7, 232
reduction, 7, 232
reference electrode, 12, 46, 233
reference potential, 17
salt, 233
 Li-ion battery, 117
salt concentration, 27, 118
secondary cell, 7, 233
SEI, 87
SEI forming additives, 119
self-discharge, 155, 198, 233
Pb-acid, 50
separator, 10, 120
inorganic composite membrane, 122
microporous polymeric membrane, 122
multi-layered, 122
non-woven fabric mat, 122
permeability, 121
pore size, 121
shut-down, 121
series connected capacitors, 64
sheding, 51
shelf-life, 155, 233
shut-down additives, 120
Si-based electrode, 96
silicon, 96
single-phase insertion reaction, 30
SLI, 51
SOC, 180, 233
SOC estimation
capacitors, 187
SOF, 192
SOFC, 79
SOH, 189, 233
solid electrolyte interphase, 87
solid oxide fuel cell, 79
solid polymer electrolyte, 123
solvation shell, 95
solvent co-insertion, 214
solvents, 115
SOP, 192
specific capacity, 37
specific energy, 38, 233
specific power, 232
spinel, 105
high-voltage, 108
standard hydrogen electrode, 17
standard potential, 15, 17
starting, lighting and ignition battery, 51
state functions, 179
state of charge, 180, 233
state of function, 192
state of health, 189, 233
state of power, 192
Stokes–Einstein equation, 26
stratification, 50
strong HEV, 145
sulphation, 50
sulphuric acid, 48
super capacitor, 62
surface protective layer, 101
tab, 136
tap density, 137
technology selection, 157
<table>
<thead>
<tr>
<th>Temperature</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>15, 233</td>
</tr>
<tr>
<td>Control</td>
<td>Control</td>
</tr>
<tr>
<td>Charging</td>
<td>Method</td>
</tr>
<tr>
<td>Method</td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>172</td>
</tr>
<tr>
<td>Method</td>
<td>174</td>
</tr>
<tr>
<td>Cycling</td>
<td></td>
</tr>
<tr>
<td>Management</td>
<td>205</td>
</tr>
<tr>
<td>Runaway</td>
<td>175</td>
</tr>
<tr>
<td>System</td>
<td>163</td>
</tr>
<tr>
<td>Coefficient</td>
<td>22</td>
</tr>
<tr>
<td>Transfer</td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>26</td>
</tr>
<tr>
<td>Transference</td>
<td></td>
</tr>
<tr>
<td>Two-phase</td>
<td></td>
</tr>
<tr>
<td>Insertion</td>
<td>30</td>
</tr>
<tr>
<td>Reaction</td>
<td></td>
</tr>
<tr>
<td>Ultra</td>
<td>62</td>
</tr>
<tr>
<td>Capacitor</td>
<td></td>
</tr>
<tr>
<td>Undercharge</td>
<td>233</td>
</tr>
<tr>
<td>Condition</td>
<td>146</td>
</tr>
<tr>
<td>Valve</td>
<td>52</td>
</tr>
<tr>
<td>Regulated</td>
<td></td>
</tr>
<tr>
<td>Battery</td>
<td>73</td>
</tr>
<tr>
<td>VC</td>
<td>119</td>
</tr>
<tr>
<td>Vinylene</td>
<td>119</td>
</tr>
<tr>
<td>Carbonate</td>
<td></td>
</tr>
<tr>
<td>Volt</td>
<td>233</td>
</tr>
<tr>
<td>Voltage</td>
<td></td>
</tr>
<tr>
<td>Depression</td>
<td>57</td>
</tr>
<tr>
<td>Hysteresis</td>
<td>34</td>
</tr>
<tr>
<td>Look-up</td>
<td>183</td>
</tr>
<tr>
<td>Profile</td>
<td>17</td>
</tr>
<tr>
<td>Voltammogram</td>
<td>42</td>
</tr>
<tr>
<td>Capacity</td>
<td>37</td>
</tr>
<tr>
<td>VRLA</td>
<td>52</td>
</tr>
<tr>
<td>Warburg</td>
<td>45</td>
</tr>
<tr>
<td>Impedance</td>
<td></td>
</tr>
<tr>
<td>Working</td>
<td>46</td>
</tr>
<tr>
<td>Electrode</td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>233</td>
</tr>
<tr>
<td>ZEBRA</td>
<td>67</td>
</tr>
<tr>
<td>Battery</td>
<td></td>
</tr>
<tr>
<td>Zinc-air</td>
<td>69</td>
</tr>
<tr>
<td>Battery</td>
<td></td>
</tr>
</tbody>
</table>