Introduction to the AdS/CFT Correspondence

Providing a pedagogical introduction to the rapidly developing field of AdS/CFT correspondence, this is one of the first texts to provide an accessible introduction to all the necessary concepts needed to engage with the methods, tools, and applications of AdS/CFT. Without assuming anything beyond an introductory course in quantum field theory, it begins by guiding the reader through the basic concepts of field theory and gauge theory, general relativity, supersymmetry, supergravity, string theory, and conformal field theory, before moving on to give a clear and rigorous account of AdS/CFT correspondence. The final section discusses the more specialized applications, including QCD, quark–gluon plasma, and condensed matter. This book is self-contained and learner-focused, featuring numerous exercises and examples. It is essential reading for both students and researchers across the fields of particle, nuclear, and condensed matter physics.

Horațiu Năstase is a Researcher at the Institute for Theoretical Physics at the State University of São Paulo, Brazil. To date, his career has spanned four continents: as an undergraduate he studied at the University of Bucharest and at Copenhagen University. He later completed his Ph.D. at the State University of New York at Stony Brook, before moving to the Institute for Advanced Study, Princeton, where his collaboration with David Berenstein and Juan Maldacena defined the pp wave correspondence. He has also held research and teaching positions at Brown University and the Tokyo Institute of Technology.

Introduction to the AdS/CFT Correspondence

HORAŢIU NĂSTASE

Institute for Theoretical Physics at the State University of São Paulo

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107085855

© H. Năstase 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication Data Năstase, Horațiu, 1972– author. Introduction to the AdS/CFT correspondence / Horațiu Năstase, Institute for Theoretical Physics at the State University of São Paulo.

pages cm

ISBN 978-1-107-08585-5 1. Gauge fields (Physics) 2. Supergravity. 3. Supersymmetry. 4. String

models. I. Title. OC793.3.G38N38 2015

530.14'3-dc23

2015005313

ISBN 978-1-107-08585-5 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To the memory of my mother, who inspired me to become a physicist

Contents

Preface			<i>page</i> xv	
Ac	know	ledgments	xvi	
In	troduc	ction	xvii	
		Part I Background	1	
1	Elem	ents of quantum field theory and gauge theory	3	
	1.1	Note on conventions	3	
	1.2	The Feynman path integral and Feynman diagrams	3	
	1.3	S matrices vs. correlation functions	8	
	1.4	Electromagnetism, Yang-Mills fields and gauge groups	10	
	1.5	Coupling to fermions and other fields and gauging a symmetry; the		
		Noether theorem	12	
	1.6	Symmetry currents and the current anomaly	16	
	Exe	rcises	22	
2	Basics of general relativity; Anti-de Sitter space			
	2.1	Curved spacetime and geometry; the equivalence principle	23	
	2.2	Kinematics: Christoffel symbols and tensors	27	
	2.3	Dynamics: Einstein's equations	31	
	2.4	Global structure: Penrose diagrams	34	
	2.5	Anti-de Sitter space: definition, metrics, Penrose diagram	35	
	Exer	rcises	43	
3	Basio	cs of supersymmetry	44	
	3.1	Lie algebras; the Coleman–Mandula theorem	44	
	3.2	Supersymmetry: a symmetry between bosons and fermions	44	
	3.3	Spinors in various dimensions	47	
	3.4	The 2-dimensional Wess–Zumino model: on-shell supersymmetry	50	
	3.5	The 2-dimensional Wess–Zumino model: off-shell supersymmetry	53	
	3.6	The 4-dimensional Wess–Zumino model	54	
	3.7	Two-component notation, extended supersymmetry algebra, and		
		multiplets; R-symmetry	55	
	3.8	$\mathcal{N} = 1$ superspace in four dimensions	60	

viii		Contents	
	I	3.9 The $\mathcal{N} = 1$ Super Yang–Mills (SYM) action 3.10 The $\mathcal{N} = 4$ Super Yang–Mills (SYM) action Exercises	64 67 70
	4	Basics of supergravity4.1The vielbein and spin connection formulation of general relativity4.2Counting degrees of freedom of on-shell and off-shell fields4.3Local supersymmetry: supergravity4.4 $\mathcal{N} = 1$ on-shell supergravity in four dimensions4.5Generic features of supergravity theoriesExercises	72 72 75 78 79 82 85
	5	 Kaluza–Klein dimensional reduction 5.1 The KK background, KK expansion, and KK reduction 5.2 The KK dimensional reduction 5.3 The expansion of various fields on tori 5.4 Consistent truncation and nonlinear ansatz 5.5 Example: original Kaluza–Klein reduction 5.6 General properties; symmetries Exercises 	87 87 90 91 93 94 96
	6	 Black holes and p-branes 6.1 The Schwarzschild solution: metric, horizon, black holes 6.2 Continuation inside the horizon; global structure 6.3 Solutions with charge; solutions inside AdS space 6.4 Black holes in higher dimensions 6.5 Black holes extended in <i>p</i> spatial dimensions: "<i>p</i>-brane solutions" Exercises 	98 98 100 102 105 109 113
	7	 String theory actions and spectra 7.1 Worldline particle action and worldline construction of Feynman diagrams 7.2 First order particle action 7.3 A relativistic tensionful string: the Nambu–Goto action 7.4 The Polyakov action 7.5 Equations of motion, constraints, and quantization in covariant gauge 7.6 Quantization in light-cone gauge; the bosonic string spectrum 7.7 Strings in background fields 7.8 Supersymmetric strings 7.9 Supergravities in the α' → 0 limit and the duality web 7.10 Constructing S-matrices Exercises 	 114 114 117 118 120 121 126 129 131 135 139 141
	8	Elements of conformal field theory8.1 Conformal transformations and the conformal group8.2 Conformal fields in two Euclidean dimensions	142 142 145

	Contents	
_		1.4
	8.3 Conformal fields and correlators in $d > 2$	14
	8.4 $\mathcal{N} = 4$ Super Yang–Mills as a conformal field theory	15
	Exercises	15
9	D-branes	15
	9.1 Dirichlet boundary conditions and D-branes	15
	9.2 D-brane fluctuations: fields, action, and tension	15
	9.3 Chan–Patton factors and quantization of open strings on D-branes	15
	9.4 The action of multiple D3-branes and the $\mathcal{N} = 4$ SYM limit	16
	Exercises	16
	Part II Basics of AdS/CFT for $\mathcal{N}=4$ SYM vs. $AdS_5 \times S^5$	16
10	The AdS/CFT correspondence: motivation, definition, and spectra	16
	10.1 D-branes = extremal <i>p</i> -branes	17
	10.2 Motivation: near-horizon limit, Hawking radiation, and the two points	
	of view	17
	10.3 Definition: limit, validity, operator map	17
	10.4 Spectra and "experimental" evidence	17
	10.5 Global AdS/CFT; dimensional reduction on S^3	18
	Exercises	18
11	Witten prescription and 3-point correlator calculations	18
	11.1 Witten prescription for correlation functions	18
	11.2 Set-up: the 2-point function of scalars in x space	18
	11.3 Set-up: 2-point function of gauge fields in x space and momentum	
	space	18
	11.4 3-point functions; example: R-current anomaly	19
	11.5 Calculation of full 3-point function of R-currents	19
	Exercises	19
12	Holography in Lorentzian signature: Poincaré and global coordinates	20
	12.1 Mode and propagator calculations in Lorentzian signature for Poincaré	
	coordinates	20
	12.2 Prescription for holography in Lorentzian signature for	
	Poincaré coordinates	20
	12.3 Mode and propagator calculations in global Lorentzian	
	coordinates	20
	12.4 Holography in global Lorentzian coordinates: interpretation	20
	Exercises	20
13	Solitonic objects in AdS/CFT	20
13	Solitonic objects in AdS/CFT 13.1 Instantons vs. D-instantons	
13	13.1 Instantons vs. D-instantons	20
13	-	20 20 21 21

_	Contents	
1/	Quarks and the Wilson loop	220
14	•	220
	14.1 External quarks in QCD: Wilson loops	
	14.2 The Wilson loop and the interquark potential 14.2 Defining the $M = 4$ SVM supersummatric Wilson loop via $A dS/CET$	222
	14.3 Defining the $\mathcal{N} = 4$ SYM supersymmetric Wilson loop via AdS/CFT	224
	14.4 Calculating the interquark potential	228
	14.5 Nonsupersymmetric Wilson loop	229
	Exercises	231
15	Finite temperature and $\mathcal{N}=$ 4 SYM plasmas	232
	15.1 Finite temperature in field theory: periodic time	232
	15.2 Quick derivation of Hawking radiation	233
	15.3 Black holes and supersymmetry breaking	235
	15.4 The AdS black hole and Witten's finite temperature prescription	236
	15.5 Application of finite temperature: mass gap	240
	15.6 $\mathcal{N} = 4$ SYM plasmas from AdS/CFT	241
	15.7 Adding a finite chemical potential $\mu \neq 0$	247
	15.8 Adding a magnetic field $B \neq 0$	248
	Exercises	251
16	Scattering processes and gravitational shockwave limit	253
	16.1 The "hard-wall" model for QCD	253
	16.2 Scattering in QCD and the Polchinski–Strassler scenario	254
	16.3 Regge behavior	255
	16.4 Gravitational shockwave scattering as a model of QCD high energy	
	scattering	256
	16.5 Black holes in the IR of the gravity dual and the Froissart bound	258
	16.6 QCD plasmas and shockwave models for heavy ion collisions	261
	Exercises	265
17	The pp wave correspondence	266
	17.1 The Penrose limit in gravity and pp waves	266
	17.2 The Penrose limit of AdS/CFT: large R-charge	269
	17.3 String quantization and Hamiltonian on the pp wave	271
	17.4 String states from $\mathcal{N} = 4$ SYM; BMN operators	273
	17.5 The discretized string action from $\mathcal{N} = 4$ SYM	274
	17.6 Spin chain interpretation	277
	Exercises	281
18	Spin chains	282
	18.1 The Heisenberg XXX spin chain Hamiltonian, H_{XXX}	282
	18.2 The $SU(2)$ sector and H_{XXX} from $\mathcal{N} = 4$ SYM	283
	18.3 The coordinate Bethe ansatz	285
	18.4 Thermodynamic limit and Bethe strings	290

xi	Contents	
	19 6 Dethe strings from AIC strings	204
	18.6 Bethe strings from AdS strings Exercises	294 297
	2	_, .
	Part III AdS/CFT developments and gauge–gravity dualities	299
	9 Other conformal cases	301
	19.1 $AdS_4 \times S^7$ and $AdS_7 \times S^4$	301
	19.2 $\mathcal{N} = 2$ orientifold of $AdS_5 \times S^5$	305
	19.3 Other orbifolds and orientifolds	310 311
	19.4 Open strings on pp waves and orientifolds Exercises	311
	Exercises	514
	0 The 3-dimensional ABJM model vs. $AdS_4 imes \mathbb{CP}^3$	316
	20.1 The ABJM model	316
	20.2 Reduction of M2 to D2 and Mukhi–Papageorgakis Higgs	
	mechanism	318
	20.3 Brane construction: the IR limit of M2-branes on $\mathbb{C}^4/\mathbb{Z}_k$ and	
	$AdS_4 imes \mathbb{CP}^3$ gravity dual	321
	20.4 The massive deformation of the ABJM model	325
	20.5 The fuzzy sphere ground state	326
	20.6 Some comments on applications of the ABJM/ $AdS_4 \times \mathbb{CP}^3$	
	correspondence	328
	Exercises	329
	1 Gravity duals	331
	21.1 General properties, map, features	331
	21.2 Finite temperature and cut-off AdS_5 solutions	335
	21.3 The Polchinski–Strassler and Klebanov–Strassler solutions	336
	21.4 The Maldacena–Núñez and Maldacena–Năstase solutions	338
	21.5 The Sakai–Sugimoto model	342
	21.6 Mass spectra in gravity duals from field eigenmodes; examples	343
	21.7 Mass spectra in gravity duals from mode expansion on probe branes;	
	Sakai–Sugimoto example	347
	21.8 Finite N?	349
	Exercises	350
	2 Holographic renormalization	352
	22.1 Statement of the problem and expected results: renormalization of	
	infinities	352
	22.2 Asymptotically AdS spaces and asymptotic expansion of the	254
	fields	354
	22.3 Method	355
	22.4 Example: massive scalar	357
	Exercises	361

xii	Contents			
	23 RG flow between fixed points	363		
	23.1 $\mathcal{N} = 1$ supersymmetric mass deformation of $\mathcal{N} = 4$ SYM and an IR			
	fixed point	363		
	23.2 c-theorem	365		
	23.3 Holographic RG flow and c-theorem; kink ansatz	366		
	23.4 Supersymmetric flow	367		
	Exercises	369		
	24 Phenomenological gauge–gravity duality I: AdS/QCD	370		
	24.1 Extended "hard-wall" model for QCD	370		
	24.2 "Soft-wall" model for QCD	373		
	24.3 Improved holographic QCD	376		
	Exercises	380		
	25 Phenomenological gauge-gravity duality II: AdS/CMT	381		
	25.1 Lifshitz, Galilean, and Schrödinger symmetries and their			
	gravity duals	381		
	25.2 Spectral functions	385		
	25.3 Transport properties	388		
	25.4 Viscosity over entropy density from dual black holes	392		
	25.5 Gauge fields, complex scalars, and fermions in AdS space vs. CFTs	393		
	25.6 The holographic superconductor	394		
	25.7 The ABJM model, quantum critical systems, and compressible quantum matter	399		
	25.8 Reducing the ABJM model to the Landau–Ginzburg model	403		
	Exercises	406		
	26 Gluon scattering: the Alday—Maldacena prescription	407		
	26.1 T-duality of closed strings and supergravity fields	407		
	26.2 T-duality of open strings and D-branes	409		
	26.3 T-duality on AdS space for scattering amplitudes	411		
	26.4 Scattering amplitude prescription	413		
	26.5 4-point amplitude	414		
	26.6 IR divergences	416		
	26.7 Fermionic T-duality	417		
	Exercises	419		
	27 Holographic entanglement entropy: the Ryu–Takayanagi prescription	420		
	27.1 Entanglement entropy	420		
	27.2 Application for black holes	421		
	27.3 Entanglement entropy in quantum field theory	422		
	27.4 Ryu–Takayanagi holographic prescription	424		
	27.5 Holographic entanglement entropy in two dimensions	425		

xiii	Contents			
	27.6 Holographic entanglement as order parameter and confinement/deconfinement transitionExercises	426 428		
	References Index	430 434		

Preface

This book is intended as a pedagogical introduction to the rapidly developing field of the AdS/CFT correspondence. This subject has grown to the point where graduate students, as well as researchers, from fields outside string theory or even particle theory, in particular nuclear physics and condensed matter physics, want to learn about it. With this in mind, the book endeavours to introduce AdS/CFT without assuming anything beyond an introductory course in quantum field theory. Some familiarity with the principles of general relativity, supersymmetry or string theory would help the reader follow more easily, but is not necessary, as I introduce all the necessary concepts. I do not overload the book with unnecessary details about these fields, only what I need to give a simple, yet completely rigorous, account of all the basic methods, tools, and applications of AdS/CFT. For more details on these subjects, one can consult a number of good textbooks available for each, which I suggest at the end of the corresponding chapters. When explaining AdS/CFT, I try to give a simple introduction to each method, tool, or application, without aiming for an in-depth or exhaustive treatment. The goal is to introduce most of the AdS/CFT methods, but for an in-depth treatment one should refer to research articles instead. Part I of the book deals with the necessary background material, so someone familiar with this can skip it. Part II describes the basics of AdS/CFT in the context of its best understood example, $\mathcal{N} = 4$ SYM vs. string theory in $AdS_5 \times S^5$. Part III deals with more specialized applications and other dualities, generalizing to the gauge-gravity dualities.

Acknowledgments

It is not possible to write a scientific book without having benefited from learning from teachers, collaborators, and colleagues. So first I would like to thank all of the people who shaped me as a scientist. My mother, through her example as a physicist, first made me realize the beauty of physics and of a scientific career. My high school physics teacher in Romania, Iosif Sever Georgescu, made me realize that I could actually become a physicist, and started my preparation for the physics olympiads, that meant my first contact with international science. My advisor for the undergraduate exchange to NBI in Denmark, Poul Olesen, introduced me to string theory, and all the faculty at NBI made me realize what career I wanted to pursue. My PhD advisor, Peter van Nieuwenhuizen, shaped who I am as a researcher, and many of the subjects described in the first part of this book I learned from him. Of course, I also thank all the other teachers and professors I had along the way. While a postdoc at IAS in Princeton, I learned a lot from Juan Maldacena, who started AdS/CFT, about many of the subjects described in this book. I also thank all my collaborators throughout the years who have helped me understand the concepts presented here.

This book originated from a course I first gave at Tokyo Tech, then at Tokyo Metropolitan University, and finally at the IFT in São Paulo, so I would like to thank all the students that participated in the classes for their input about the material.

In writing this book, I benefited from encouragement and comments on the text from David Berenstein, Aki Hashimoto, and Jeff Murugan. My students Thiago Araujo, Prieslei Goulart, and Renato Costa helped me get rid of errors and typos in an earlier version of the book, and Thiago Araujo and his wife Aline Lima helped me create the figures and make them intelligible. I would like to thank my collaborators, students, and postdocs for their understanding about having less time for interacting with them while I wrote this book.

Introduction

This book gives an introduction to the Anti-de Sitter/Conformal Field Theory correspondence, or AdS/CFT, so it would be useful to first understand what it is about.

From the name, we see that it is a relation between a quantum field theory with conformal invariance (which is a generalization of scaling invariance), living in our flat 4-dimensional space, and string theory, which is a quantum theory of gravity and other fields, living in the background solution of $AdS_5 \times S^5$ (5-dimensional Anti-de Sitter space times a 5-sphere), a curved space with the property that a light signal sent to infinity comes back in a finite time.

The flat 4-dimensional space containing the field theory lives at the boundary (situated at infinity) of the $AdS_5 \times S^5$, thus the correspondence, or equivalence, is said to be an example of *holography*, since it is similar to the way a 2-dimensional hologram encodes the information about a 3-dimensional object. The background $AdS_5 \times S^5$ solution is itself a solution of string theory, as the relevant theory of quantum gravity.

From this description, it is obvious that before we describe AdS/CFT, we must first introduce a number of topics, which is done in Part I of the book. First, we review some relevant notions of quantum field theory, though I assume that the reader has a working knowledge of quantum field theory. Then I describe some basic concepts of general relativity, supersymmetry, and supergravity, since string theory is a supersymmetric theory, whose low energy limit is supergravity. After that, I introduce black holes and *p*-branes, since the $AdS_5 \times S^5$ string theory background appears as a limit of them. Finally, I introduce string theory, elements of conformal field theory (4-dimensional flat space theories with conformal invariance), and D-branes, which are objects in string theory on which the relevant quantum field theories can be defined.

The AdS/CFT correspondence was put forward by Juan Maldacena in 1997, as a conjectured duality based on a heuristic derivation which will be explained, and until now there is no exact proof for it. However, there is an enormous amount of evidence in its favor in the form of calculations matching on the two sides of the correspondence, turning it into a virtual certainty, so while technically we should append the name "conjecture" to it, this would be a pedantic point, and I shall refrain from doing so.

However, while this is true for all dualities which can be derived in the manner of Maldacena, there are now applications to real-world physics, which I call "phenomenological AdS/CFT," where one uses some general lessons learned from AdS/CFT to engineer a description in terms of quantum field theory that has the right properties to be relevant for systems of interest, but without a microscopic derivation. In this category fall some applications to QCD, quark–gluon plasma, and condensed matter, which are described in detail

xviii

Introduction

in Part III of the book. In these cases it is therefore important to realize the conjectural nature of the correspondence.

Another question that we should ask is why is the AdS/CFT correspondence interesting? The reason is that it relates perturbative (weak coupling) string theory calculations in a gravitational theory to nonperturbative (strong coupling) gauge theory calculations, which would otherwise be very difficult to obtain. Of course, the reverse is also true, namely nonperturbative (strong coupling) string theory in a gravitational background is related to perturbative (weak coupling) gauge theory, allowing in principle an (otherwise unknown) definition of the former through the latter, but the rules in this case are much less clear. The strong–weak coupling relation means that AdS/CFT is an example of duality, in the sense of the electric–magnetic duality of Maxwell theory.

The applications to QCD and condensed matter are, however, hampered by the fact that the AdS/CFT duality becomes calculable in the limit of large rank of the gauge group, or "number of colours" on the field theory side, $N_c \rightarrow \infty$. Also, the best understood example of $\mathcal{N} = 4$ SYM is very far from the real world, having both supersymmetry and conformal invariance. When we move away from supersymmetry and conformal invariance, the rules are less clear and we can calculate less, as we will see. Nevertheless, AdS/CFT is a developing field, and we have already obtained many useful results and insights, so we can hope that these methods will lead to solving interesting problems that cannot be solved otherwise.