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1
Elements of quantum field theory

and gauge theory

In this chapter, I review some useful issues about quantum field theory, assuming
nevertheless that the reader has seen them before. It will also help to set up the notation
and conventions.

1.1 Note on conventions

Throughout this book, I use theorist’s conventions, with � = c = 1. If we need to
reintroduce them, we can use dimensional analysis. In these conventions, there is only
one dimensionful unit, mass = 1/length = energy = 1/time = . . . and when I speak of
dimension of a quantity I refer to mass dimension, e.g. the mass dimension of d4x, [d4x],
is −4.

For the Minkowski metric ημν I use the signature convention mostly plus, thus
for instance in 3+1 dimensions the signature will be (− + + +), giving ημν =
diag(−1,+1,+1,+1). This convention is natural in order to make heavy use of the
Euclidean formulation of quantum field theory and to relate to Minkowski space via Wick
rotation.

Also, in this book we use Einstein’s summation convention, i.e. indices that are repeated
are summed over. Moreover, the indices summed over will be one up and one down, unless
we are in Euclidean space, where up and down indices are the same.

1.2 The Feynman path integral and Feynman diagrams

To exemplify the basic concepts of quantum field theory, and the Feynman diagrammatic
expansion, I use the simplest possible example, of a scalar field. A scalar field is a field that
under a Lorentz transformation

x′μ = �μ
νxν , (1.1)

transforms as

φ′(x′μ) = φ(xμ). (1.2)
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4 Elements of quantum field theory and gauge theory

We will deal with relativistic field theories, which are also local, which means that the
action is an integral over functions defined at one point, of the type

S =
∫

Ldt =
∫

d4xL(φ, ∂μφ). (1.3)

Here L is the Lagrangean, whereas L(φ(�x, t), ∂μφ(�x, t)) is the Lagrangean density, that
often times by an abuse of notation is also called Lagrangean.

Classically, one varies this action with respect to φ(x) to give the classical equations of
motion for φ(x),

∂L
∂φ

= ∂μ

[
∂L

∂(∂μφ)

]
. (1.4)

Quantum mechanically, the field φ(x) is not observable anymore, and instead one must use
the vacuum expectation value (VEV) of the scalar field quantum operator instead, which is
given as a “path integral” in Minkowski space,

〈0|φ̂(x1)|0〉 =
∫

DφeiS[φ]φ(x1). (1.5)

Here the symbol
∫ Dφ represents a discretization of a spacetime path φ(xμ1 ) → φ(xμ2 ),

followed by integration over the field value at each discrete point:

∫
Dφ(x) = lim

N→∞

N∏
i=1

∫
dφ(xi). (1.6)

The action in Minkowski space for a scalar field with only nonderivative self-interactions
and a canonical quadratic kinetic term is

S =
∫

d 4xL =
∫

d 4x

[
−1

2
∂μφ∂

μφ − 1

2
m2φ2 − V(φ)

]

=
∫

d 4x

[
1

2
φ̇2 − 1

2
| �∇φ|2 − 1

2
m2φ2 − V(φ)

]
. (1.7)

A generalization of the scalar field VEV is the correlation function or Green’s function or
n-point function,

Gn(x1, . . . , xn) = 〈0|T{φ̂(x1) . . . φ̂(xn)}|0〉 =
∫

DφeiS[φ]φ(x1) . . . φ(xn). (1.8)

We note, however, that the weight inside the integral, eiS, is highly oscillatory, so the
n-point functions are hard to define precisely in Minkowski space.

It is much better to Wick rotate to Euclidean space, with signature ++ . . .+, define all
objects there, and at the end Wick rotate back to Minkowski space. Both definitions and
calculations are then easier. This is also what will happen in the case of AdS/CFT, which
will have a natural definition in Euclidean signature, but will be harder to continue back to
Minkowski space.

The Wick rotation happens through the relation t = −itE. To rigorously define path
integrals, we consider only paths which are periodic in Euclidean time tE. In the case that
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5 1.2 The Feynman path integral and Feynman diagrams

the Euclidean time is periodic, a quantum mechanical path integral gives the statistical
mechanics partition function at β = 1/kT through the Feynman–Kac formula,

Z(β) = Tr{e−βĤ}
(
=

∫
dq

∑
n

|ψn(q)|2e−βEn =
∫

dq〈q,β|q, 0〉
)

=
∫

Dqe−SE[q]|q(tE+β)=q(tE). (1.9)

To obtain the vacuum functional in quantum field theory, we consider the generalization
to field theory, for periodic paths with infinite period, i.e. limβ→∞ φ(�x, tE + β) = φ(�x, tE).
The Euclidean action is defined through Wick rotation, by the definition

iSM ≡ −SE. (1.10)

This gives for (1.7)

SE[φ] =
∫

d4x
[1

2
∂μφ∂μφ + 1

2
m2φ2 + V(φ)

]
, (1.11)

where, since we are in Euclidean space, aμbμ = aμbμ = aμbνδμν , and time is defined as
tM ≡ x0 = −x0 = −itE, tE = x4 = x4, and so x4 = ix0. In this way, the oscillatory factor
eiS has been replaced by the highly damped factor e−S, sharply peaked on the minimum of
the Euclidean action.

The Euclidean space correlation functions are then defined as

G(E)
n (x1, . . . , xn) =

∫
Dφe−SE[φ]φ(x1) . . . φ(xn). (1.12)

We can define a generating functional for the correlation functions, the partition
function,

Z(E)[J] =
∫

Dφe−SE[φ]+J·φ ≡ J〈0|0〉J , (1.13)

where in d dimensions

J · φ ≡
∫

ddxJ(x)φ(x). (1.14)

It is so called because at finite periodicity β we have the same relation to statistical
mechanics as in the quantum mechanical case,

Z(E)[β, J] = Tr{e−βĤJ } =
∫

Dφe−SE[φ]+J·φ |φ(�x,tE+β)=φ(�x,tE). (1.15)

The Euclidean correlation functions are obtained from derivatives of the partition function,

G(E)
n (x1, . . . , xn) = δ

δJ(x1)
. . .

δ

δJ(xn)

∫
Dφe−SE+J·φ

∣∣∣∣
J=0

= δ

δJ(x1)
. . .

δ

δJ(xn)
Z(E)[J]

∣∣∣∣
J=0

. (1.16)
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6 Elements of quantum field theory and gauge theory

Going back to Minkowski space, we can also define a partition function as a generating
functional of the Green’s functions,

Z[J] =
∫

DφeiS[φ]+i
∫

ddxJ(x)φ(x), (1.17)

that again gives the correlation functions through its derivatives by

Gn(x1, . . . , xn) = δ

iδJ(x1)
. . .

δ

iδJ(xn)

∫
DφeiS+i

∫
ddxJ(x)φ(x)

∣∣∣∣
J=0

= δ

iδJ(x1)
. . .

δ

iδJ(xn)
Z[J]

∣∣∣∣
J=0

. (1.18)

The correlation functions can be calculated in perturbation theory in the interaction Sint,
through the use of Feynman diagrams.

The Feynman theorem relates the correlation functions in the full theory, in the vacuum
of the full theory |�〉, with normalized ratios of correlation functions in the interaction
picture, in the vacuum of the free theory |0〉,

〈�|T{φH(x1) . . . φH(xn)}|�〉

= lim
T→∞(1−iε)

〈0|T
{
φI(x1) . . . φI(xn) exp

[
− i

∫ T
−T dtHI(t)

]}
|0〉

〈0|T
{

exp
[
− i

∫ T
−T dtHI(t)

]}
|0〉

, (1.19)

where HI is the interaction Hamiltonian Hi in the interaction picture (H = H0 + Hi), φI is
an interaction picture field, and φH is a Heisenberg picture field. The denominator cancels
vacuum bubbles, which factorize in the calculation, leaving only connected diagrams.

In the path integral formalism and in Euclidean space, we can find correlation functions
of the full theory as normalized correlation functions in the interaction picture (divided by
the vacuum bubbles), giving again connected diagrams only. For the one-point function
and at nonzero source J(x), we obtain the relation

1

Z[J]

δZ[J]

δJ(x)
= δ(−W[J])

δJ(x)
, (1.20)

where −W[J] is defined as the generating functional of connected diagrams, relation
solved by

Z[J] = N e−W[J]. (1.21)

Here W[J] is called the free energy, again because of the relation with statistical mechanics.
To exemplify the Feynman rules, we use a scalar field action in Euclidean space,

SE[φ] =
∫

d4x

[
1

2
(∂μφ)2 + m2φ2 + V(φ)

]
. (1.22)

Here I have used the notation

(∂μφ)2 = ∂μφ∂
μφ = ∂μφ∂νφη

μν = −φ̇2 + ( �∇φ)2. (1.23)

Moreover, for concreteness, I use V = λφ4.
Then, the Feynman diagram in x space is obtained as follows. One draws a diagram,

in the example in Fig. 1.1a it is the so-called “setting Sun” diagram.
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7 1.2 The Feynman path integral and Feynman diagrams

)b)a

�Figure 1.1 a) “Setting Sun” diagram in x-space; b) “Setting Sun” diagram in momentum space.

The Feynman rules are:
0. Draw all the Feynman diagrams for the given correlation function at the given loop

order (or given number of vertices).
1. A line between point x and point y represents the Euclidean propagator

�(x, y) = [−∂μ∂μ + m2]−1 =
∫

d4p

(2π )4

eip(x−y)

p2 + m2
, (1.24)

which is a Green’s function for the kinetic operator, i.e.

[−∂μ∂μ + m2]x�(x, y) = δ(x − y). (1.25)

The analytical continuation (Wick rotation) of the Euclidean propagator to Minkowski
space gives the Feynman propagator,

DF(x − y) =
∫

d4p

(2π )4

−i

p2 + m2 − iε
eip·(x−y). (1.26)

2. A 4-vertex at point x represents the vertex factor∫
d4x(−λ). (1.27)

3. Then the value of the Feynman diagram, F(N)
D (x1, . . . , xn) is obtained by multiplying

all the above elements, and the value of the n-point function is obtained by summing over
diagrams, and over the number of 4-vertices N with a weight factor 1/N!:

Gn(x1, . . . , xn) =
∑
N≥0

1

N!

∑
diag D

F(N)
D (x1, . . . , xn). (1.28)

Equivalently, one can use a rescaled potential λφ4/4! and construct only topologi-
cally inequivalent diagrams. Then the vertices are still

∫
d4x(−λ), but we divide each

inequivalent diagram by a statistical weight factor,

S = N! (4! )N

# of equivalent diagrams
, (1.29)

which equals the number of symmetries of the diagram.
In momentum space, we can use simplified Feynman rules, where we consider as inde-

pendent momenta the external momenta flowing into the diagram, and integration variables
l1, . . . , lL for each independent loop in the diagram. Using momentum conservation at each
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8 Elements of quantum field theory and gauge theory

vertex, we can calculate the momentum on each internal line, pi, as a function of the loop
momenta lk and the external momenta qj. The propagator is now

�(p) = 1

p2 + m2
, (1.30)

and for each internal line (between two internal points) we write 1/(p2
i + m2), for each

external line (between two points, one of them external) q/(q2
j + m2). The vertex factor is

now simply −λ.

1.3 Smatrices vs. correlation functions

We mentioned in the previous section that the VEV of a scalar field is an observable in
quantum theory. More precisely, the normalized VEV in the presence of a source J(x),

φ(x; J) = J〈0|φ̂(x)|0〉J
J〈0|0〉J = 1

Z[J]

∫
Dφe−SE[φ]+J·φφ(x) = δ

δJ(x)
ln Z[J]

= − δ

δJ(x)
W[J], (1.31)

is called the classical field φcl and satisfies a quantum version of the classical field equation.
One defines the quantum effective action as the Legendre transform of the free energy,

�[φcl] = W[J] +
∫

d4xJ(x)φcl(x), (1.32)

and finds that it contains the classical action, plus quantum corrections. Then we have the
quantum analog of the classical equation of motion with a source δS[φ]/δφ(x) = J(x),

δ�[φcl]

δφcl(x)
= J(x). (1.33)

The effective action is a generator of the one particle irreducible (1PI) diagrams (except
for the 2-point function, where we add an extra term).

To relate to real scatterings, one constructs incoming and outgoing wavefunctions, repre-
senting actual states, in terms of the idealized states of fixed (external) momenta �k. These
are Schrödinger picture states 〈{�pi}| and |{�kj}〉. We also define Heisenberg picture states
whose wavepackets are well isolated at t = −∞, and can be considered noninteracting
there (but overlap at other t),

|{�pi} >in, (1.34)

and Heisenberg picture states whose wavepackets are well isolated at t = +∞, and can be
considered noninteracting there (but overlap at other t),

|{�pi} >out . (1.35)

Then the S-matrix is defined by

〈{�pi}|S|{�kj}〉 = out〈{�pi}|{�kj}〉in. (1.36)
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9 1.3 S matrices vs. correlation functions

Reduction formula (Lehmann, Symanzik, Zimmermann)

The LSZ formula relates S-matrices to correlation functions in momentum space, in
Minkowski space, near the physical pole for incoming and outgoing particles.

Define the momentum space Green’s functions as

G̃n+m(pμi , kμj ) =
∫ n∏

i=1

∫
d4xie

−ipi·xi

×
m∏

j=1

∫
d4yje

ikj·yj〈�|T{φ(x1) · · ·φ(xn)φ(y1) · · ·φ(ym)}|�〉. (1.37)

Then we have

in〈{pi}n|{kj}m〉out

= lim
p2

i →−m2
i ,k2

j →−m2
j

n∏
i=1

(p2
i + m2 − iε)

−i
√

Z

m∏
j=1

(k2
j + m2 − iε)

−i
√

Z
G̃n+m(pμi , kμj ). (1.38)

Here Z is the field renormalization factor, and can be defined from the behavior near the
physical pole of the full 2-point function,

G2(p) =
∫

d4xe−ip·x〈�|T{φ(x)φ(0)}|�〉 � −iZ

p2 + m2 − iε
. (1.39)

In other words, to find the S-matrix, we put the external lines on a shell, and divide by the
full propagators corresponding to all the external lines (but note that Z belongs to two exter-
nal lines, hence the

√
Z). This implies a diagrammatic procedure called amputation: we do

not use propagators on the external lines. We also need to consider connected diagrams
only, since the S-matrices are normalized objects, and we need to exclude processes where
nothing happens and external particles go through without interactions, corresponding to
the identity matrix. Therefore we have

〈{�pi}|S − 1|{�kj}〉 =
(∑

connected, amputated Feynman diag.
)
× (

√
Z)n+m. (1.40)

To understand the amputation procedure, consider the setting Sun diagram with external
momenta k1 and p1 and internal momenta p2, p3 and k1 − p2 − p3 in Fig. 1.1b. The result
for the amputated diagram is in Euclidean space (note that for the S-matrix we must go to
Minkowski space instead):

(2π )4δ4(k1 − p1)
∫

d4p2

(2π )4

d4p3

(2π )4
λ2 1

p2
2 + m2

1

p2
3 + m2

1

(k1 − p2 − p3)2 + m2
4

. (1.41)

Feynman path integral with composite operators

Up to now we have considered only correlators of fundamental fields, which are related
to external states for the quanta of these fields. But there is no reason to restrict ourselves
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10 Elements of quantum field theory and gauge theory

to this, we can also consider external states corresponding to a composite field O(x), for
instance

Oμν(x) = (∂μφ∂νφ)(x)(+ · · · ). (1.42)

We can then define Euclidean space correlation functions for these operators

< O(x1) · · ·O(xn) >Eucl =
∫

Dφe−SEO(x1) · · ·O(xn)

= δn

δJ(x1) · · · δJ(xn)

∫
Dφe−SE+

∫
d4xO(x)J(x)|J=0, (1.43)

which can be obtained from the generating functional

ZO[J] =
∫

Dφe−SE+
∫

d4xO(x)J(x). (1.44)

1.4 Electromagnetism, Yang–Mills fields and gauge groups

Electromagnetism

Up to now we have discussed only scalar fields. Gauge bosons describing forces between
particles correspond to vector fields. The simplest example of such a field is the Maxwell
field describing the electromagnetic force (the photon),

Aμ(x) = (−φ(�x, t), �A(�x, t)), (1.45)

where φ is the Coulomb potential and �A is the vector potential.
The field strength is

Fμν = ∂μAν − ∂νAμ ≡ 2∂[μAν], (1.46)

and it contains the electric �E and magnetic �B fields as

− F0i = F0i = Ei; Fij = εijkBk. (1.47)

The observables like �E and �B are defined in terms of Fμν (and not Aμ) and as such the
theory has a gauge symmetry under a U(1) group, that leaves Fμν invariant,

δAμ = ∂μλ; δFμν = 2∂[μ∂ν]λ = 0. (1.48)

The Minkowski space action for electromagnetism is

SMink = −1

4

∫
d4xF2

μν , (1.49)

which becomes in Euclidean space (since A0 and ∂/∂x0 = ∂t rotate in the same way)

SE = 1

4

∫
d4x(Fμν)2 = 1

4

∫
d4xFμνFρσ η

μρηνσ . (1.50)
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