Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>xiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notation</td>
<td>xvi</td>
</tr>
<tr>
<td>Acronyms</td>
<td>xviii</td>
</tr>
</tbody>
</table>

1 Scalar-Wave Models in Electromagnetic Scattering

1.1 Partial Differential Equations for Scalar Waves in the Time Domain 2
1.2 Plane, Spherical, and Cylindrical Waves in the Time Domain 5
1.3 Partial Differential Equations for Scalar Waves in the Frequency Domain 11
1.4 Plane, Spherical, and Cylindrical Waves in the Frequency Domain 13
1.5 Green’s Functions: The Basics 15
 - 1.5.1 Green’s Function as an Impulse Response 15
 - 1.5.2 Toward the Construction of Solutions Using Green’s Functions 16
 - 1.5.3 Green’s Theorem and Integral Solution for Helmholtz’s Operator 17
 - 1.5.4 Green’s Theorem and Integral Solution for the Wave Operator 18
 - 1.5.5 Interior and Exterior Integral Solutions of the Wave Equation 19
 - 1.5.6 Uniqueness of Green’s Functions 20
 - 1.5.7 Reciprocity of Green’s Functions 20
 - 1.5.8 Green’s Theorem and Integral Solution for the Damped-Wave Operator 23
 - 1.5.9 The Mathematical Perspective: Adjoint and Self-Adjoint Operators and Green’s Functions 25
1.6 Integral Solutions to the Wave Equation 27
 - 1.6.1 Causal and Acausal Waves and Green’s Functions 29
 - 1.6.2 Causal Interior and Exterior Integral Solutions to the Wave Equation 34
 - 1.6.3 Integral-Equation Models of Transient Radiation 35
 - 1.6.4 Integral-Equation Model of Transient Back-Propagation 36
 - 1.6.5 The Initial-Value Problem 44
 - 1.6.6 The Initial-Value Problem—Back-Propagation 45
1.7 Integral Solutions to the Helmholtz Equation 46
 - 1.7.1 Interior and Exterior Kirchhoff–Helmholtz Equations 46
 - 1.7.2 Application of the Surface Equivalence Principle to Radiation 48
Contents

1.7.3 Uniqueness Theorem and the Relationship between Single-Layer and Double-Layer Equivalent Surface Sources 53
1.7.4 Application of the Surface Equivalence Principle to Scattering 55
1.7.5 Fourier Transform and Causal Solutions in the Frequency Domain 61
1.7.6 Acausal Solutions in the Frequency Domain 62
1.7.7 Green’s Causal and Acausal Functions in the Frequency Domain 65
1.7.8 Integral-Equation Models of Radiation in the Frequency Domain 65
1.7.9 Integral-Equation Models of Back-Propagation in the Frequency Domain 66
1.8 Incident Wave, Scattered Wave, and Induced Sources of Scattering 66
1.9 Integral-Equation Models of Scattering in Terms of Induced Sources 69
1.10 Green’s Function as an Incident Field 71
1.10.1 Green’s Function in the Case of Point-Wise Sampling 71
1.10.2 Green’s Function in Complex Background Medium 73
1.10.3 Auxiliary Sources Generating Green’s Function (Adjoint Sources) 76
1.10.4 Relationship between Actual Sources and Adjoint Sources 77
1.10.5 Examples of Adjoint Sources 80
1.11 Fundamental Solutions to the Wave Equation 84
1.12 Fundamental Solutions to the Helmholtz Equation 89
1.13 The Born Series in the Scalar Model of Scattering 91
1.14 The Born Approximation in the Scalar Model of Scattering 95
1.15 Convergence Criterion for the Born Series 100
1.16 The Rytov Approximation in the Scalar Model of Scattering 104
1.17 Relationship between the Born and the Rytov Approximations 107
1.18 Limitations of the Rytov Approximation 108

2 Electromagnetic Scattering: The Vector Model 111
2.1 Frequency-Domain Vector Solutions to Maxwell’s Equations 111
2.2 The Vector Helmholtz Equation and Green’s Dyadic 112
2.3 Integral Solutions to the Vector Helmholtz Equation 113
2.4 Electric and Magnetic Field Integral Equations 116
2.4.1 EM Integral Equations in Terms of Green’s Dyadic 116
2.4.2 EM Integral Equations in Terms of Green’s Scalar Function 117
2.4.3 Electric Field Equations vs. Magnetic Field Equations 118
2.5 Field Boundary Values and Uniqueness of the EM Forward Model 119
2.6 Boundary Conditions and Surface Sources in Electromagnetism 121
2.7 Surface Equivalence Principle in Electromagnetism 124
2.8 Surface Equivalence Principle in EM Radiation 126
2.9 Surface Equivalence Principle in EM Scattering 128
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.10</td>
<td>Induced Sources of EM Scattering</td>
<td>130</td>
</tr>
<tr>
<td>2.11</td>
<td>Green’s Function as an Incident Field in the Vector Data Equation</td>
<td>132</td>
</tr>
<tr>
<td>2.11.1</td>
<td>Scalar Responses from Vector Fields</td>
<td>133</td>
</tr>
<tr>
<td>2.11.2</td>
<td>Scattering Model in the Case of Field Point Sampling</td>
<td>135</td>
</tr>
<tr>
<td>2.12</td>
<td>The Linear Born and Rytov Approximations in Vector Scattering</td>
<td>141</td>
</tr>
<tr>
<td>2.13</td>
<td>TMI Approximation: The EM Model of Tomography</td>
<td>143</td>
</tr>
<tr>
<td>2.14</td>
<td>Simplifying Approximations in the Vector State Equation</td>
<td>145</td>
</tr>
<tr>
<td>2.14.1</td>
<td>Fundamental Solutions Used as Green’s Functions</td>
<td>145</td>
</tr>
<tr>
<td>2.14.2</td>
<td>Fundamental Solutions Used as Approximations of the Interior Field</td>
<td>147</td>
</tr>
<tr>
<td>2.15</td>
<td>Time-Domain Solutions to Maxwell’s Equations</td>
<td>152</td>
</tr>
<tr>
<td>3</td>
<td>Scattering Parameters in Microwave Imaging</td>
<td>154</td>
</tr>
<tr>
<td>3.1</td>
<td>Basics of S-Parameters</td>
<td>154</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Power Waves</td>
<td>155</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Scattering Matrix</td>
<td>158</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Measurements with a Vector Network Analyzer</td>
<td>160</td>
</tr>
<tr>
<td>3.2</td>
<td>S-Parameter Sensitivities</td>
<td>162</td>
</tr>
<tr>
<td>3.2.1</td>
<td>General S-Parameter Sensitivity Formula</td>
<td>164</td>
</tr>
<tr>
<td>3.2.2</td>
<td>S-Parameter Sensitivity to Constitutive Parameters</td>
<td>165</td>
</tr>
<tr>
<td>3.2.3</td>
<td>S-Parameter Sensitivity to Shape Parameters of Dielectric Objects</td>
<td>171</td>
</tr>
<tr>
<td>3.2.4</td>
<td>S-Parameter Sensitivity to Shape Parameters of Metallic Objects</td>
<td>176</td>
</tr>
<tr>
<td>3.3</td>
<td>S-Parameter Data Equation</td>
<td>178</td>
</tr>
<tr>
<td>3.3.1</td>
<td>S-Parameter Data Equation with Common System Impedance</td>
<td>179</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Relation between the Data Equation and the Fréchet Derivative of the S-Parameters</td>
<td>181</td>
</tr>
<tr>
<td>4</td>
<td>Linear Inversion in Real Space</td>
<td>182</td>
</tr>
<tr>
<td>4.1</td>
<td>Notations and Terminology</td>
<td>182</td>
</tr>
<tr>
<td>4.2</td>
<td>Acquiring the Resolvent Kernel: Simulation or Measurement</td>
<td>183</td>
</tr>
<tr>
<td>4.3</td>
<td>Qualitative Imaging with Sensitivity Maps</td>
<td>188</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Fréchet Derivative of the Data Residual</td>
<td>189</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Reconstruction Formula of the Sensitivity-Map Method</td>
<td>190</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Imaging Procedure of the Sensitivity-Map Method</td>
<td>192</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Analytical Examples Illustrating the Sensitivity-Map Method</td>
<td>193</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Simulation-Based Example Illustrating the Sensitivity-Map Method</td>
<td>199</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Sensitivity-Map Inversion with Convolution</td>
<td>202</td>
</tr>
<tr>
<td>4.4</td>
<td>Quantitative Imaging with Scattered-Power Maps</td>
<td>205</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Derivation of the Quantitative System of Linear Equation</td>
<td>205</td>
</tr>
</tbody>
</table>
Contents

4.4.2 Examples Illustrating the Scattered-Power Map Method 210
4.4.3 Scattered-Power Map Imaging with Convolution 212

4.5 Linear Inversion with Pulsed Radar: Synthetic Focusing 215
4.5.1 The Linearized Time-Domain Forward Model 216
4.5.2 Imaging through Cross-Correlation 218
4.5.3 Steering Filters 219
4.5.4 Image Generation by Migration: Delay and Sum 223
4.5.5 Simulation Example 226

4.6 Brief Overview of Other Linear Reconstruction Methods for Pulsed Radar 228
4.6.1 Radar Imaging through 3D Deconvolution 229
4.6.2 Radar Imaging through Time Reversal 231

5 Linear Inversion in Fourier Space 236
5.1 Brief Historical Notes on Microwave Holography 237
5.2 3D Holographic Inversion with Wideband Planar Data Acquisition 240
5.3 Spatial Sampling Rate and Its Impact on the Computational Requirements 244
5.4 Frequency Sampling Rate 248
5.5 Construction of the System Matrices: The PSFs 249
5.6 Matrix-Free 3D Holography with Reflection Coefficient Measurements 250
5.7 Simulation-Based Example 252
5.8 Measurement-Based Example 253
5.9 Further Reading on Fourier-Space Reconstruction 256
5.9.1 Far-Field Holography 256
5.9.2 Indirect Holography 257
5.9.3 Diffraction Tomography 258

6 Performance Metrics in Imaging 266
6.1 Fundamental Spatial Resolution Limits with Far-Zone Measurements 267
6.2 General Bistatic Formula for Spatial Resolution Limits 274
6.2.1 Resolving a Point Source 274
6.2.2 Resolution Formula for Bistatic Measurements 276
6.3 Physical Assessment of the Imaging System 280
6.3.1 System Dynamic Range D_{sys} and Response Dynamic Range D_r 280
6.3.2 Data Signal-to-Noise Ratio (SNR_d) 284
6.3.3 Physical Contrast Sensitivity 288

7 Looking Forward: Nonlinear Reconstruction 290

Appendix A: Maxwell’s Equations 297
A.1 Maxwell’s Equations in the Time Domain 297
Contents

A.2 Maxwell’s Equations in the Frequency Domain 303
A.3 Electromagnetic Duality 306

Appendix B: Electromagnetic Vector Wave and Helmholtz Equations 307
B.1 Vector Wave Equations in a Uniform Medium 307
B.2 Vector Helmholtz Equations in a Uniform Medium 309
B.3 Vector Wave and Helmholtz Equations in a Nonuniform Medium 311

Appendix C: Scalarized Electromagnetic Models 312
C.1 Vector Potentials of Constant Polarization and Field Scalarization 312
C.2 TE/TM Decomposition (Scalarization) of the Electromagnetic Sources 317
C.3 Implications of the Source Equivalence for the Uniqueness of the Inverse Source Problem 318
C.4 Field Scalarization through Spherical-Wave Functions 318

Appendix D: Causal, Acausal, and Adjoint Solutions to the Wave Equation 320
D.1 Causal, Acausal, and Adjoint Green’s Functions 320
D.2 Relationship between Causal and Acausal Wave Solutions 322

References 327
Index 341