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1 Scalar-Wave Models in
Electromagnetic Scattering

This chapter is concerned with the scalar forward models used in microwave (MW)

imaging. These are mathematical models of varying degrees of accuracy that predict

the field based on a known source of radiation in a known environment. They are called

forward because they describe the causal (or forward-in-time) relationship in a phe-

nomenon we could express as cause → effect. In imaging, the cause is described by

the model parameters, i.e., (i) the parameters of the sources generating the field and

(ii) the parameters of the environment where this field exists or propagates.1 The effect

is described by the observation data, or simply, the data. These are signals acquired

through measurements. Thus, in imaging, the forward model predicts the data, provided

the model parameters are known.

The object of imaging, however, is the inverse problem, which, in contrast to the

forward problem, is expressed as effect → cause. Finding what caused an effect is not

an easy task. The second part of this book is dedicated to the mathematical methods

used to accomplish this task. For now, it suffices to say that we first need to have a

forward model of a phenomenon before we can start solving inverse problems based on

this phenomenon. To illustrate this point, imagine that you are listening to a recording

of a symphony; in order to tell which instruments play at any given time, you have first

to have heard the sound of each instrument.

The phenomenon of interest in the forward models of MW imaging is the scattering

of the high-frequency electromagnetic (EM) field by objects.2 The scattering objects

are often referred to as targets, especially in radar, or as scatterers. In this chapter, we

discuss the mathematical scalar models of scattering.

The EM field is a vectorial field fundamentally described by Maxwell’s equations

[1, 2, 3, 4, 5]. For a summary of Maxwell’s equations, see Appendix A. However, to

simplify the analysis, scalar approximations are often made, and here we start with

these simpler models. The scalar-wave model is very useful as an intermediate step

toward the understanding of the vectorial wave model. It can also serve as a bridge to

understanding acoustic and elastic wave phenomena, which are widely used in imaging.

Strictly speaking, the scalar-wave model in electromagnetism is limited to the case

of a uniform isotropic medium, which becomes apparent when one attempts to reduce

1 The term propagation refers to the manner in which a field develops in space and time.
2 The scattering of waves refers to the way the original, or incident, waves interact with obstacles. This inter-

action produces secondary, or scattered, waves that often spread away from the object in various directions;

thus, the term scatter.
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2 Scalar-Wave Models in Electromagnetic Scattering

Maxwell’s equations to decoupled scalar second-order partial differential equations [1,

3, 5]. In such a medium, as discussed later, we may work with two types of scalar

functions: (i) the Cartesian components of the electric and magnetic field vectors and

(ii) the so-called wave functions.

One may wonder why we are interested in the simple scenario of uniform isotropic

medium, bearing in mind that MW imaging is inherently concerned with nonuniform

objects. The short answer is that most MW imaging methodologies assume that the

object under test (OUT) is immersed in a uniform medium. And in most applications,

this uniform medium is predominantly isotropic; for example, air, concrete, sea water,

soil, etc. Even if the assumption of uniformity is invalid, which may be the case when

we deal with imaging in complex environments (e.g., living tissue or concealed weapon

detection), it helps to first understand how imaging is done in a uniform background

and then move on to complex environments.

1.1 Partial Differential Equations for Scalar Waves in the Time Domain

Before exploring in depth the mathematics of scalar waves, the reader should be aware

of an important physical limitation of the analytical time-domain models of electro-

magnetism discussed later: they are applicable only if the frequency dependence (or

the dispersion) of the medium properties is negligible. This, of course, cannot be true

throughout the spectrum; however, it could be approximately true for the bandwidth

of the radiation (the bandwidth of the excitation sources). Then, these models can be

useful. Time-domain modeling is particularly important in imaging with pulsed radar.

More notes on dispersion are given later as appropriate.

The time-domain Maxwell’s equations, when applied to the Cartesian components

of the field vectors in a uniform isotropic medium, lead to the second-order partial

differential equation [3, 5] (see Appendix B for its derivation):

[

∇2 − μǫ
∂2

∂t2
− (μσe + ǫσm)

∂

∂t
− σeσm

]

uξ (r, t ) = Sξ (r, t ), (1.1)

where r is position, t is time, u ≡ E or H (E or H denote the type of field, electric or

magnetic, respectively), and ξ ≡ x, y, z is the vector component. The constitutive param-

eters ǫ, μ, σe, and σm are permittivity, permeability, electric conductivity, and magnetic

conductivity, respectively,3 all of them being constant in r as per the assumption of a

3 In high-frequency problems, the conductivities σe and σm are often referred to as equivalent conductivities,

and they represent losses due to the conversion of EM energy into heat (dissipation). The equivalent mag-

netic conductivity σm is zero at DC (direct, or steady, current), reflecting the fact that magnetic charges and,

therefore, magnetic conduction currents do not exist. At higher frequencies, however, magnetic materials

do exhibit polarization loss analogous to the one observed in polarizable dielectrics. The difference with

lossy dielectrics is that, in the latter, loss due to charge transport (electric conduction) is present and this

loss mechanism exists all the way down to DC.
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1.1 Partial Differential Equations for Scalar Waves in the Time Domain 3

uniform medium. The excitation term is

Sξ (r, t ) =

{
(

μ ∂
∂t

+ σm

)

Ji,ξ (r, t ) +
(

ǫ ∂
∂t

+ σe

)−1 ∂ρi

∂ξ
if u = E

−(∇ × J i)ξ if u = H,
(1.2)

where ρi and J i are the impressed electric charge and current densities, respectively. As

discussed in Appendix B, (ǫ ∂
∂t

+ σe)−1 denotes the inverse of the differential operator

(ǫ ∂
∂t

+ σe).

Eq. (1.1) is a linear second-order partial differential equation describing damped

waves, and it appears in analogous forms in various physical fields; see, for example,

[6, 7, 8].

It is important to note that Eq. (1.1) follows from Maxwell’s curl equations only after

imposing the conditions (see Appendix B)

∇ · B(r, t ) = 0 (1.3)

∇ · D(r, t ) = ρe(r, t ), (1.4)

where D is the electric flux density, B is the magnetic flux density, and ρe is the total

electric charge density. Eq. (1.3) and Eq. (1.4) are Maxwell’s divergence equations. For

a summary of Maxwell’s equations, see Appendix A.

The solutions to Eq. (1.1) satisfy Maxwell’s curl equations if and only if they also

satisfy Eq. (1.3–1.4) [1]. In other words, for a solution to Eq. (1.1) to be admissible, it

must be checked against Eq. (1.3–1.4).

Another limitation of Eq. (1.1) is that it holds for the Cartesian components of the

field only. This is inconvenient when the field has spherical or cylindrical symmetries.

This limitation is overcome by the use of the wave functions. The wave functions are in

effect the values of two collinear vector potentials, the magnetic vector potential A and

the electric vector potential F , which are so defined as to have a fixed known direction

û, i.e., A = ûA, F = ûF . The wave functions are A and F . The construction of EM

solutions in a uniform source-free medium using Cartesian, cylindrical, and spherical

scalar-wave functions is described in detail in [1, 5]. Also, Appendix C summarizes the

methods used to reduce the EM model to two decoupled scalar-wave equations. What

matters here is that the two wave functions satisfy the wave equation (see Eq. (C.20) in

Appendix C):

[

∇2 − μǫ
∂2

∂t2
− (μσe + ǫσm)

∂

∂t
− σeσm

]

u(r, t ) = 0, (1.5)

where u(r, t ) ≡ A,F is the wave function.

It must be emphasized that, with the proper choice of the wave functions and their

polarization û, the above equation Eq. (1.5) can be used in rectangular, cylindrical,

or spherical coordinate systems. Moreover, unlike Eq. (1.1), the wave-function model

needs to solve at the most two (not three) decoupled scalar equations. Often, one equa-

tion suffices, for example for a transverse wave in a uniform source-free medium. Thus

the main advantages of the wave-function models are that (i) they can be employed
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4 Scalar-Wave Models in Electromagnetic Scattering

Figure 1.1 Illustration of the impact of the electric and magnetic conductivities on the attenuation

of waves: the spatial distribution of a uniform plane wave simulated with MEFiSTo-3D [10].

not only in rectangular but also in curvilinear coordinate systems and (ii) at the most

two decoupled scalar equations need to be solved as opposed to three such equations

when solving for the vector field in Cartesian coordinates. Notice also that the left

side of Eq. (1.5) contains the same partial differential operator (knowns as the wave

or d’Alambert operator) as that in Eq. (1.1).

Let me emphasize that in general the constitutive parameters in Eq. (1.1) and Eq. (1.5)

exhibit frequency dependence [9]. This is why Eq. (1.1) and Eq. (1.5) are used only if the

excitation signals span a frequency range within which the constitutive parameters are

sufficiently constant. The most obvious reminder of the frequency dispersion is the fact

that at static and quasi-static (very low frequency) regimes, σm = 0. In such regimes, the

time-derivative terms in Eq. (1.1) and Eq. (1.5) are set to zero, reducing these equations

to the Laplace form ∇2u = 0, not to (∇2 − σeσm)u = 0.

To illustrate the impact of the conductivity terms σe and σm in the wave equation

Eq. (1.5), let us consider a uniform plane wave propagating along z. Fig. 1.1 shows the

wave as a function of position in two different instances, t = 250 ps and t = 350 ps,

in three cases: (a) when the medium (vacuum, ǫ = ǫ0, μ = μ0) has no loss (σe = 0,
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1.2 Plane, Spherical, and Cylindrical Waves in the Time Domain 5

Figure 1.2 Illustration of the impact of the electric and magnetic conductivities on the attenuation

of waves: the temporal distribution of a uniform plane wave simulated with MEFiSTo-3D [10].

σm = 0); (b) when the medium has only loss due to electric conductivity (σe = 0.05

S/m, σm = 0); and (c) when the medium has both electric and magnetic loss (σe = 0.05

S/m, σm = 5000 /m). Fig. 1.2 shows the same wave as a function of time measured at

two locations: z = 20 mm (closer to the source) and z = 60 mm. It is clear that losses

are responsible for a decrease in strength as the wave propagates away from the source.

This decrease is referred to as dissipation (the conversion of EM energy into heat).

Magnetic and electric specific conductivities are both mathematical means of describing

dissipation. Loss also causes changes in the shape of the signal. This is referred to as

dispersion. Notice the tails behind the main pulse that are clearly visible in the case of

losses in both Fig. 1.1 and Fig. 1.2.

1.2 Plane, Spherical, and Cylindrical Waves in the Time Domain

Let us consider the solutions of the wave equations in cases where the wave is inde-

pendent in two of the three spatial coordinates. They give the mathematical form of
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6 Scalar-Wave Models in Electromagnetic Scattering

the plane, spherical, and cylindrical waves depending on the chosen coordinate system.

These solutions are important because they are often used to approximate the field due

to distant RF or MW sources. In imaging, these are approximations of what is referred

to as the incident field, i.e., the field that exists in the background medium when no

scattering objects are present. The time-dependent plane and spherical-wave solutions

are widely used in pulsed radar imaging.

For simplicity, let us focus on the time-domain symmetric wave solutions in the loss-

free case (σe = 0 and σm = 0) when the wave equation is

(

∇2 −
1

υ2

∂2

∂t2

)

u(r, t ) = s(r, t ). (1.6)

Here, υ is the speed at which the wavefront advances, and υ−2 = μǫ. This case has

practical significance. It is true that matter always exhibits loss (or dissipation), how-

ever minuscule it may be. Yet, for some forms of matter (e.g., air, most ceramics), the

assumption of no loss holds very well at MW frequencies. In addition, the general solu-

tions to Eq. (1.5), where the loss terms are nonzero, are not available in a closed analyt-

ical form, unless some assumptions are made; for example, the assumption of low loss

[7, 8]. In any case, due to the significant frequency dependence of the damping rates,

the analytical modeling of a lossy medium is best done in the frequency domain, which

we pursue in the subsequent sections.

A. Plane-Wave Solution in the Time Domain

If the wave field is independent of two Cartesian spatial variables, it is referred to as

a uniform plane wave, described by what is known as the equation of the vibrating

string. For example, if the wave is independent of x and y, then the source-free (or

homogeneous) form of Eq. (1.6) is

(

∂2

∂z2
−

1

υ2

∂2

∂t2

)

u(z, t ) = 0. (1.7)

The general solution of Eq. (1.7) is [11]

u(z, t ) = f+(z − υt ) + f−(z + υt ). (1.8)

Here, f+ and f− are arbitrary differentiable functions representing waves propagat-

ing in the positive and in the negative z directions, respectively. It is common to refer

to the first term, the argument of which is p+ = z − υt, as the incident wave, while

the second term, of argument p− = z + υt, is the reflected wave.4

4 The reader is reminded that the particular form of f+ and f− is determined once the initial or the boundary

conditions are given. For example, if nonzero initial conditions u(z, 0) = u0(z) and
∂u(z,0)

∂t
= g0(z) are

imposed, then [11]

u(z, t ) = 1
2

[

u0(z − υt ) + u0(z + υt ) + 1
υ

∫ x+υt

x−υt

g0(ξ )dξ

]

.

Here, u0(ξ ) and g0(ξ ) are known functions. In a different scenario, the initial conditions may be zero, but

a solution may be required for z ≥ 0 such that u(0, t ) = b(t ) where b(t ) is a known time-varying boundary

condition at z = 0. Then u(z, t ) = b(t − z/υ ), 0 ≤ z < ∞.
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1.2 Plane, Spherical, and Cylindrical Waves in the Time Domain 7

Electrical engineers will recognize this one-dimensional (1D) wave behavior as

the solution to the telegrapher’s equation describing the propagation of voltage and

current signals along a loss-free transmission line [12]. Eq. (1.8) also represents a

uniform plane wave.

Another important class of EM waves, the transverse electromagnetic (TEM)

waves,5 also exhibit this behavior along z. In contrast to the uniform plane wave,

the TEM wave may vary along the transverse coordinates x and y (as a harmonic

function). More specifically, a TEM field component Fξ , where ξ can be either x or

y but not z, has the form Fξ = ℓ(x, y) · f (z ∓ vt ) (the sign depends on whether the

wave is incident or reflected), where ℓ(x, y) must satisfy the 2D Laplace equation in

the xy plane [1, 13]. Notice that the uniform plane wave is a particular case of the

TEM wave for which ℓ(x, y) = const.

The solution of the 3D wave equation Eq. (1.6) for a uniform plane wave propa-

gating in any direction given by the unit vector û is known as the general one-way

wave solution [11]:

u(t, r) = f (û · r − υt ), (1.9)

where r = (x, y, z) denotes the observation location. The first term in Eq. (1.8) is a

special case of Eq. (1.9) when û = ẑ, while the second term corresponds to the case

when û = −ẑ.

The plane-wave solution Eq. (1.9) is widely used in radar imaging to approximate

the EM field in a region, which is (a) in open space and far from the sources and (b)

sufficiently small to ignore the typical far-zone (∼1/r) behavior of the field intensity

(r being the distance to the source).6

B. Spherical-Wave Solution in the Time Domain

Another symmetric solution of Eq. (1.6) arises when the field propagates as a spher-

ical wave, i.e., it is independent of the two angular coordinates θ and φ of a spher-

ical coordinate system. It is a function of the radial distance r and the time t. This

solution plays an important role in the modeling of 3D open problems7 where the

spherical coordinate system is convenient to use. The usual definition of a spherical

coordinate system is illustrated in Fig. 1.3. In this case, the Laplacian operator in

Eq. (1.6) is written out in spherical coordinates, and the derivatives with respect to

5 The term transverse electromagnetic (TEM) indicates that both the electric and the magnetic field vectors

are perpendicular to the direction of propagation.
6 The far zone of a radiating structure (an antenna) is all space beyond a distance rf from the antenna such that

it satisfies all of the following conditions: rf >> λ, rf >> DA, and rf ≥ 2D2
A/λ, where λ is the wavelength

of the radiation and DA is the maximum dimension of the antenna. In practice, the >> inequality above is

usually taken as > 10×. We recall that the far-zone EM field in an unbounded medium is a TEM field i.e.,

both the E and the H field vectors are transverse to û [5]. It is these transverse field components that are

approximated by Eq. (1.9). The transverse nature of the far-zone EM wave, together with the assumption

that its dependence on the transverse coordinates can be neglected, ensures that the uniform plane-wave

solution satisfies not only the wave equation but also Eq. (1.3–1.4).
7 An open (or radiation) problem is that of analyzing the field in an infinite (or unbounded) region, the

boundary of which extends to infinity.
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8 Scalar-Wave Models in Electromagnetic Scattering

x

y

z

r
θ

φ

Figure 1.3 The spherical coordinate system.

θ and φ are set to zero. For the case of zero sources, the result is

1

r2

∂

∂r

(

r2 ∂u

∂r

)

−
1

υ2

∂2u

∂t2
= 0. (1.10)

The general solution to this homogeneous equation is easily found since it can be

reduced to the equation of the vibrating string Eq. (1.7) by rewriting it as [14]

(

∂2

∂r2
−

1

υ2

∂2

∂t2

)

(ru) = 0. (1.11)

The general spherical-wave solution is then

u(r, t ) =
f+(r − υt )

r
+

f−(r + υt )

r
, ξ = x, y, z. (1.12)

The argument p+ = r − υt in the first term of Eq. (1.12) implies a wave diverg-

ing from the center of the coordinate system, i.e., propagating in the positive radial

direction r̂. This case corresponds to the outgoing wave of a point source of wave-

form f+(t ) located at the origin (0, 0, 0). Thus, the first term in Eq. (1.12) is a phys-

ically valid causal solution to the open problem with a point source at the origin.8

In contrast, p− = r + υt implies a spherical wave converging toward the origin with

time. It could be understood as a spherical wave propagating backward (collapsing)

toward the point source. This solution is not causal in an unbounded medium and is

normally excluded from the forward model. Note, however, that a region bounded

by a spherical reflecting surface (for example, a metallic shell) can support perfectly

well the solution of the collapsing wave. In this case, the source of the collapsing

wave is the spherical shell boundary, and the collapsing wave is in fact causal.

It is instructive to examine the validity of the scalar spherical-wave approximation

of the EM waves in the form of Eq. (1.12) with regard to the conditions in Eq. (1.3–

1.4). First, we note that the spherical components of the EM field do not satisfy the

wave equation Eq. (1.1): their Cartesian components do. Therefore, Eq. (1.12) is not

applicable to the wave Cartesian components in general.

8 A causal solution describes a response (such as a field value) that never precedes its excitation source. For

example, if the source function is identically zero everywhere in space before some initial time t0, then the

causal field solution must be identically zero everywhere in space for all t ≤ t0.
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1.2 Plane, Spherical, and Cylindrical Waves in the Time Domain 9

The spherical-wave functions A and F , however, do satisfy the wave equation in

spherical coordinates (see Appendix C). As a consequence, it can be shown that all

the components of the EM field that observe the ∼1/r behavior (these are referred to

as the far-zone or far-field components) are transverse to the radial direction, i.e., the

direction of propagation [5]. Thus, the far-zone wave is a TEM wave.9 This result

is often used in antenna engineering [15]. In particular, in a spherical coordinate

system, the far field has only θ and φ components: uξ , u ≡ E,H, ξ = θ, φ, both

of which, in general, are functions of θ and φ10 in addition to their dependence on

the distance as ∼1/r. These field components are often approximated in the form of

the first (outgoing) term in Eq. (1.12). Such a field, however, does violate Maxwell’s

divergence equations, Eq. (1.3–1.4).

Take as an example the far-zone electric field due to a current element11 oriented

along z and centered at the origin. Its far-zone E-field has a θ component only, and

it behaves as Eθ ∼sin(θ )/r. The divergence of this E-field, found to be ∼cos(θ )/r2,

is not zero for all θ , thus violating Eq. (1.4). If this result is viewed as an error in the

field approximation, we can state that this error decreases with distance as ∼1/r2

and is zero at θ = 90◦. Notice that the plane θ = 90◦ (the z = 0 plane) is a plane of

symmetry in the field pattern where the radiation attains its maximum. This result

can be generalized for any antenna by viewing it as a collection of current elements.

The spherical-wave approximation of any of the transverse field components is valid

for any observation direction as long as r is sufficiently large. Its accuracy improves

for directions close to the direction of maximum radiation (the maximum of the

radiation pattern) where the derivatives of the far field with respect to the angles θ

and φ are zero.

C. Cylindrical-Wave Solution in the Time Domain

Analogously to the plane and spherical waves, the cylindrical wave is described

by the solution of the wave equation in cylindrical coordinates, where the wave is

set to be independent of two coordinates: the vertical coordinate z and the angular

coordinate φ. The usual definition of the cylindrical coordinate system is illustrated

in Fig. 1.4. The wavefront of the cylindrical wave is an infinitely long (along z)

cylindrical surface that advances radially away from the z axis along the positive

radial direction ρ̂. Clearly, such an infinite wavefront is an approximation that can

be only locally valid. This approximation can be useful in the two-dimensional (2D)

9 Strictly speaking, the far-zone EM field is only predominantly TEM because the longitudinal field compo-

nents (either Er or Hr or both) are only asymptotically zero and therefore negligible in comparison with

the transverse components.
10 The far-field dependence on the observation direction (θ, φ) is described by what is known as the antenna

radiation pattern.
11 A current element, also referred to as an infinitesimal electric dipole, is a vanishingly short line segment

supporting alternating current (AC). The practical implementation of a current element is a very short

(compared to the wavelength λ) piece of wire excited by an RF source at its midpoint. The current element,

measured in units of (A × m), is the fundamental point source in radiation theory analogous to the point

charge in electrostatics.
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10 Scalar-Wave Models in Electromagnetic Scattering

x

y

z

z

ρ

φ

Figure 1.4 The cylindrical coordinate system.

time-domain modeling of open problems when the field and its sources can be

assumed to be independent of the vertical variable z.

In this case, the Laplacian operator ∇2 in Eq. (1.6) is written out in cylindrical

coordinates, and the partial derivatives with respect to φ and z are set to zero. The

result is

1

ρ

∂

∂ρ

(

ρ
∂u

∂ρ

)

−
1

υ2

∂2u

∂t2
= 0. (1.13)

As it turns out, the general wave solution in this case is not as simple as in the cases

of planar and spherical symmetry; it appears in the form of convolution integrals

[16]:

u(ρ, t ) =
∫ t−ρ/υ

−∞

f+(τ )dτ
√

(t − τ )2 − (ρ/υ )2
+

∫ ∞

t+ρ/υ

f−(τ )dτ
√

(τ − t )2 − (ρ/υ )2
. (1.14)

That the first term represents an outgoing wave becomes apparent from the fact that

it is the past values of f+ that contribute to u(ρ, t ). Note that ρ/υ is real-positive and

that the upper limit of the integral ensures that the integrand remains real-valued for

all τ . In contrast, in the second term, the integration is over the future values of f−.

In problems unbounded in ρ (0 ≤ ρ < ∞), the second term is nonphysical because

it is acausal.

To understand better the behavior of the cylindrical wave, let us consider a par-

ticular outgoing wave solution when f+(t ) = δ(t ) and f−(t ) = 0. Then, as per the

sampling property of the δ-function, we have

u(ρ, t ) =

{

0 if 0 < t < ρ/υ
1√

t2−(ρ/υ )2
if t > ρ/υ. (1.15)

As we will see shortly, this is in fact a solution proportional to Green’s function of

Eq. (1.13) [17]. This solution can be interpreted as an outward propagating wave

behaving as ∼1/
√

ρ. This becomes apparent if u(ρ, t ) is expressed as

u(ρ, t ) =

{

0 if 0 < t < ρ/υ
1√

t−ρ/υ
· 1√

t+ρ/υ
if t > ρ/υ,

(1.16)
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